首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
航空   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
对倾角回转误差的算法和公式进行了积极探讨,对GJB1801-1993中倾角回转误差算法进行改进尝试并通过对测试方法进行理论分析和一组典型数据的计算结果对此予以进行证明。在此基础上对倾角回转误差算法进行了修正,增加约束条件:消除的一阶谐波分量必须幅值相同,相位相差90°,从而得到修正公式。再从基本误差定义出发,重新对倾角回转误差进行推导,得到了相同的结果。  相似文献   
2.
电镀砂轮具有优异的成型性和形状保持能力,越来越广泛地应用于复杂曲面的加工,但是磨损对零件表面完整性影响的研究并不充分.在深入分析利用圆环型砂轮在插磨方式下加工GH4169试件所产生的表面形貌形成规律的基础上,对高刚度矩形试件的磨削表面粗糙度随砂轮磨削量的变化进行了详细记录,并对某型号发动机静子叶片进行实际磨削验证.试验结果表明,精磨时适当的砂轮磨损可以使高刚度试件表面粗糙度下降35%,对表面硬度和残余应力影响不大;而叶片的弱刚度会大幅提高磨削粗糙度,但适当的砂轮磨损可以使叶片端部粗糙度下降64%,并降低刚度对粗糙度的影响,进而提高叶片表面磨削质量的一致性.因此,通过磨削粗糙度对砂轮的磨损状况进行大致评估,选择合适磨损量的砂轮用于精加工,以充分降低工件的表面粗糙度并提高磨削质量的一致性.  相似文献   
3.
制导火箭弹在陆军未来战争中正发挥越来越重要的作用,制导控制系统设计是制导火箭弹研制的核心和难题。提出了一种适用于制导火箭弹制导控制系统的精益设计方法,将设计过程分为数据处理环节、自动驾驶仪设计环节、制导律设计环节和六自由度仿真分析环节4个部分,并将标准化和基于模型的思想体现在精益化设计软件中,从而给出了一条可以又快又好地完成系统设计的技术途径。  相似文献   
4.
在攻击坦克、舰艇等特定目标时,需要对导弹的终端落角进行约束,进一步提高战斗部的毁伤效能。针对这一问题,设计了基于多项式函数推导的落角约束制导律。首先在纵向对称平面内建立弹目相对运动学的小扰动线性化模型,利用落角和脱靶量的始端和终端约束条件,推导得到了满足落角约束的制导律的解析表达式。对该制导律进行仿真,仿真结果表明该制导律可以使导弹按照期望落角命中目标。  相似文献   
5.
采用试切法对高精度圆锥倒角刀后刀面修磨,一次修磨合格率低于80%。通过针对使用试切法对倒角刀后刀面进行修磨的弊端进行分析,提出了改进方法。该方法通过理论计算获得万能分度头三个转角和刀具角度的关系,并具有规范的操作流程。对该方法进行了误差分析并进行了实验验证,证明通过该方法修磨的圆锥倒角刀锥角精度在±15′以内。相对于试切法,改进方法的锥角误差降低,稳定性大幅提高,操作时间大幅缩短。  相似文献   
6.
马爽  李勋  崔伟  苏帅 《航空制造技术》2016,(18):102-108
利用超硬磨料砂轮进行GH4169叶片型面的精密磨削加工是提高其几何精度的有效手段.通过对GH4169材料进行悬臂插磨试验发现在精磨参数下磨削表面硬度在44~47HRC之间,叶片表面双方向均获得较大的残余压应力,进给方向上的残余压应力大于线速度方向上的残余压应力,且磨削参数对磨削表面硬度和残余压应力的影响不显著.在此基础上,基于磨削表面粗糙度小于Ra0.5μm的要求,提出叶片插磨的参数优化原则,为了降低磨削粗糙度推荐插磨参数:砂轮线速度26.8m/s,进给速度1000mm/min,型面磨削残高2μm;为了减小磨削力引起叶片的弹性变形所造成的加工误差,推荐磨削深度为0.005mm.在推荐参数下所加工叶片的形状精度可达到20μm以内,磨削表面以下没有明显的拉应力层,压应力层深度约为70μm,最大残余压应力位于表面下5μm处.以上研究为GH4169叶片的悬臂插磨工艺提供了一种基于表面完整性的参数优化方法和一组经过优化的精磨参数.  相似文献   
7.
为了更真实全面地仿真航空发动机的使用状态,研制了一种用于小型航空发动机整机动态姿态仿真测试的台架。该台 架具有横滚和俯仰2个自由度,可提供位置、速率及摇摆等功能,采用伺服电机带动齿轮组件和蜗轮蜗杆进行驱动,并具备排气装 置。设计结果表明:动态姿态模拟转台速度可达30°/s,加速度可达50°/s2,运动范围为±175°,定位精度实测优于±0.12°;可以任何 位置为中心做正弦、梯形、三角波等形式的运动。该设备的研制可进一步提高地面试验的仿真精度,有利于发动机检测技术的发展。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号