首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
航空   5篇
  2023年   1篇
  2021年   2篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
叶片前缘旋流和常规冲击对比数值研究   总被引:3,自引:2,他引:1  
刘高文  薛彪  彭力  夏全忠 《推进技术》2011,32(4):576-580,585
为了寻求更好的叶片前缘内冷结构,对旋流冲击和常规冲击的流动和传热特性进行了数值模拟,对比研究了二者的涡流结构、传热强度、流动阻力、综合传热性能和热均匀性,研究了通道Re数和冲击间距对这些参数的影响。结果表明旋流冲击形成的旋涡有利于传热的增强和热均匀性的提高。在所研究的Re数(2×104~7.78×104)和冲击间距(3.3~5倍直径)范围内,旋流冲击与常规冲击相比平均传热增强18%~34%,增幅随Re数和冲击间距的增大而增大;流阻增大10%~26%,增幅随Re数和冲击间距的增大而减小;综合传热性能增强20%左右;热均匀性提高60%左右。  相似文献   
2.
航空发动机压气机内气液非平衡冷却特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
林阿强  郑群  夏全忠  杨璐  刘高文 《推进技术》2021,42(8):1776-1785
针对航空涡轮发动机来流雾化冷却对压气机内气动脉动的影响,考虑壁面液膜成形和运动,基于欧拉-拉格朗日多相流方法解析气液两相热质非平衡传输过程,应用快速傅里叶变换方法将压气机性能参数随旋转周期演变规律的时域脉动敏感性转化为频域功率谱密度的直观分析。结果表明,压气机内气液非平衡蒸发相变易诱发流场在时间和空间上非定常的气动脉动,雾化冷却参数与总温比成线性关系,而与总压比和效率均成非线性关系。在雾化量0.5%~5%和雾化平均粒径1~9 μm范围内,较低的雾化量或较小的雾化平均粒径时,时域总压比的脉动程度更大;在较低的雾化量或较大雾化平均粒径时,时域总温比的脉动程度更强;而在较高的雾化量或较大的雾化平均粒径时,时域效率脉动程度更高。同时,雾化冷却量变化对湿压缩过程中流场的时域脉动敏感性程度大于雾化粒径变化。  相似文献   
3.
为了给航空发动机在进气条件下的吞冰损伤物理试验提供多方案快速优化的数值参考,建立了航空发动机叶片吞冰损 伤快速分析的数值模拟方法和流程,并形成了1套软件系统。该系统通过研究发动机进气吞冰过程中冰体6自由度运动姿态和轨 迹的流场快速模拟方法,建立了吞冰流场的数值仿真模型;通过冰体的本构模型及冰体撞击叶片损伤效应的系统研究,准确建立 了叶片损伤模型;将吞冰流场计算和冰撞击过程计算进行了一体化耦合,形成了航空发动机叶片吞冰损伤的快速分析软件系统, 建立了冰块运动姿态、冰块撞击叶片破碎过程及轨迹预测的一体化仿真流程。结果表明:数值计算方法能够有效预测冰块运动轨 迹和撞击变形量,变形量误差不大于8%;该软件系统有效地解决了吞冰损伤复杂过程有限元模型的自动生成问题,极大地提高了 分析效率,可有效节约试验成本、提高试验效率。  相似文献   
4.
为了提升封严篦齿的封严性能,对在机匣上开设矩形凹槽的直通篦齿结构中的流动特征和封严性能进行了数值模拟,获得了凹槽篦齿的涡流结构、泄漏系数和封严效率,并与光滑篦齿的结果进行了对比.研究了凹槽尺寸、相对位置及压比和转速的影响.计算表明,矩形凹槽宽深比是影响凹槽篦齿封严性能的重要参数,当宽深比大于临界值时,相对于光滑齿的封严效率可大幅提升到15%左右.凹槽与篦齿间的轴向相对位置在一定范围内对凹槽齿的泄漏系数影响微小.数据还显示,压比和转速对凹槽齿的封严性能影响微小.  相似文献   
5.
涡轮与冲压组合动力高温进气预冷特性   总被引:1,自引:0,他引:1  
针对涡轮基冲压组合循环发动机中高温进气影响涡轮发动机性能的问题,开展实际某高空模拟试验进气预冷段的数值分析。基于欧拉-拉格朗日多相流方法解析气液两相热质传输过程,探索射流冷却对不同高空高马赫数进气条件时预冷段内温度和压力的沿程变化规律。结果表明,射流冷却对流场具有明显地温降效果。带有射流装置的预冷段内流动损失是以由黏性耗散所引起的耗散熵产为主,而由气-液传热温差所引起流场温度梯度变化的加热熵产并不显著。对比高空模拟试验进气工况在射流量4%~7%的冷却效果发现,预冷段内气流温降程度为32.30~90.08 K,冷却前后总压降系数范围由1.42%~1.86%降低到0.95%~1.46%。因此,射流冷却技术在一定程度上改善涡轮发动机在高空高马赫数工作时进气流场特性。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号