首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   285篇
  国内免费   95篇
航空   931篇
航天技术   167篇
综合类   82篇
航天   211篇
  2024年   10篇
  2023年   50篇
  2022年   53篇
  2021年   58篇
  2020年   67篇
  2019年   77篇
  2018年   53篇
  2017年   66篇
  2016年   49篇
  2015年   52篇
  2014年   82篇
  2013年   67篇
  2012年   73篇
  2011年   66篇
  2010年   60篇
  2009年   46篇
  2008年   48篇
  2007年   56篇
  2006年   37篇
  2005年   29篇
  2004年   33篇
  2003年   28篇
  2002年   26篇
  2001年   19篇
  2000年   21篇
  1999年   19篇
  1998年   17篇
  1997年   19篇
  1996年   18篇
  1995年   23篇
  1994年   8篇
  1993年   13篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   14篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
排序方式: 共有1391条查询结果,搜索用时 562 毫秒
971.
基于加权矩阵的TDOA多站无源定位算法   总被引:1,自引:1,他引:0  
无源定位技术有着广阔的应用前景,传统的多站无源定位通常使用泰勒展开法对目标进行定位求解,在此基础上一种基于加权矩阵的多站到达时间差测量法被提出.当被测目标发射信号中存在稳定载波情况下,以各站点的载波跟踪环路为切入点,分析了采用常规时域相关法对载波跟踪时的环路噪声特性方程,利用此方程对多个观测站间的距离差观测量加权矩阵进行建模,再利用此加权矩阵对定位方程进行改进,最终得到高精度的目标位置解.通过仿真实验可以证明:在同等条件下该方法比传统泰勒展开法的定位精度有所提高,最好可提高精度约30%.该方法是一种适用于多站无源定位的有效方法,尤其适用于移动观测站点情况.   相似文献   
972.
旋转盘腔进气位置的敏感性分析   总被引:3,自引:2,他引:1  
丁水汀  张弓  李烨  李果 《航空动力学报》2011,26(8):1681-1687
为保证涡轮盘满足适航规章的安全性要求,采用单向FSI(fluid structure interaction)数值方法,研究旋转盘腔无量纲进气位置的变化对冷却效果的影响,并依据旋转盘腔冷却问题的工程评价体系对冷却效果进行评价.结果表明:无量纲进气位置的改变使旋转腔的流动结构发生变化,从而影响盘面换热效果和转盘的温度分布,导致与温度梯度紧密相关的热应力水平也发生变化.随着无量纲进气位置的提升,旋转盘腔的流阻损失增大,转盘迎风面的平均换热效果减弱,转盘的应力水平和在低半径处的最大等效应力值均下降.无量纲进气位置的变化能够从部件承受能力和实际使用载荷两方面对涡轮盘的失效概率产生影响.因此,在涡轮盘腔的设计阶段,需要考虑无量纲进气位置对涡轮盘安全性的影响.   相似文献   
973.
针对容腔瞬态换热试验中测试数据的随机误差被数据处理的差分过程放大的问题,定量分析了随机测试误差对换热特性的影响,并提出抑制方法。结果表明:容腔内壁面对流换热特性误差对瞬态温度随机误差最为敏感,导致换热特性试验结果不确定度高。将改进经验模态分解(EMD)算法应用于数据差分处理过程中可以有效抑制测试随机误差对换热特性的影响。在容腔充气过程中,采用误差抑制方法后,容腔壁面换热特性的最大误差从129.07%降到63.62%,时均误差从25.24%降到8.12%。   相似文献   
974.
两相流动现象广泛存在于众多工业领域中,其流动过程参数如流速的准确测量对量化体积/质量流量及优化生产工艺和过程设备有重要意义。针对水平油水两相流流速测量问题,提出了一种同侧双晶连续波超声多普勒(CWUD)与电导环传感器相结合的测量方法。非侵入式超声多普勒传感器为双晶超声换能器,由2个倾角相同且中心频率为1 MHz的压电陶瓷晶片组成,两者之间使用隔声材料防止声波干扰,其中发射晶片向流体连续发射超声波,同时接收晶片接收经流体中离散液滴散射的超声波,测量区间覆盖管道横截面的整个径向范围。动态实验在50 mm管径的水平油水两相流装置上完成,通过分析油水两相流多普勒频移响应特性,发现在测量区间内,平均多普勒频移与总表观流速之间随连续相不同而呈现2种线性关系。因此,根据电导环传感器的电学敏感原理,获得无量纲电压参数判断两相流的连续相,继而选取相应流动状态下的测量模型,计算流体总表观流速。实验结果表明:总表观流速估计值均方根误差为0.01 m/s,平均相对误差为3.09%,其中相对误差小于5%的置信概率为70%。   相似文献   
975.
GPS接收机在测量卫星到接收机的传播距离时,通常能得到码相位和载波相位2个基本测量值。虽然载波相位测量值比码相位测量值精度高,但存在整周模糊度的问题,在实际应用中比采用码相位的技术付出的代价高很多。因此,基于相位条纹技术,提出了一种高精度的码相位测量方法。在传统码跟踪环的基础上,通过提取互功率谱相位条纹的频率,得到高精度的码相位测量值,从而组装出高精度的码伪距。仿真实验结果表明:在信噪比为-15 dB的情况下,码相位测量误差均方差约0.37 m,优于传统延迟锁定环在相同条件下约1.82 m的跟踪精度。得到了比传统码跟踪环更高的码相位测量精度的同时,不需要解算载波相位的整周模糊度,对提高GPS定位精度具有研究意义和应用价值。   相似文献   
976.
减压阀作为飞行器液压伺服系统的压力控制阀,在整机振动环境下必须维持必需的服役性能。以某飞行器用小尺寸减压阀为研究对象,将压力感受腔油液等效为液压弹簧,与调压弹簧、阀芯一起构成典型的质量-弹簧(机械弹簧和液压弹簧)-阻尼系统。分别建立了整机无振动时与整机振动时的减压阀分析方法和数学模型。研究结果表明:整机无振动时调压弹簧刚度越大,阀共振频率越高;压力感受腔容积越大,阀共振频率越低。整机振动环境影响减压阀的工作性能,可以恰当地设计减压阀的通径、弹簧刚度、压力感受腔尺寸等参数,使得减压阀在整机振动环境下实现必需的工作特性。理论结果和实验结果基本一致。振动环境下液压阀的分析方法和所建立的数学模型,为整机振动时液压元件的性能预测和评估提供了一种有效的基础理论支撑。  相似文献   
977.
微振动隔振器动态阻尼系数的测试方法   总被引:1,自引:0,他引:1  
王杰  赵寿根  吴大方  罗敏 《航空学报》2014,35(2):454-460
阻尼系数的确定对于隔振设计非常重要。针对大阻尼黏性流体微振动隔振器,提出一种确定三参数模型阻尼系数的机械阻抗等效理论与测试方法,将三参数模型简化为等效的便于试验测试的两参数隔振模型。将由自行设计的试验系统测量得到的阻尼系数和刚度系数输入到ADAMS仿真模型中,得到等效阻尼系数,并与直接采用迟滞环法得到的隔振器的等效阻尼系数进行对比分析。研究结果显示,两种方法得到的结果具有良好的一致性,证明了本文方法的可行性和可用性。本文方法还可得到以往传统方法难以得到的动态阻尼系数随频率的变化规律,对于隔振设计具有重要的参考价值。由于提出简化的等效模型,使得隔振器阻尼系数的测试更加快捷方便,本方法可推广应用于具有更多参数的隔振器阻尼系数的测量。  相似文献   
978.
含浮环式挤压油膜阻尼器转子系统的突加不平衡响应分析   总被引:2,自引:0,他引:2  
为了研究含浮环式挤压油膜阻尼器对转子系统突加不平衡响应的抑制作用,建立了浮环式挤压油膜阻尼器-转子系统的动力学模型,在模型中,充分考虑了转子与浮环式挤压油膜阻尼器的耦合作用.运用数值积分获取系统的动力学响应.研究表明,与传统挤压油膜阻尼器相比,浮环式挤压油膜阻尼器能更好地抑制转子系统的突加不平衡响应;在靠近临界转速时,浮环式挤压油膜阻尼器能抑制瞬态过程;较大的浮环质量和滑油黏度能更好地抑制转子系统突加不平衡响应.   相似文献   
979.
宋显成  陈江  杜刚  曹人靖 《航空动力学报》2013,28(12):2829-2835
通过优化环量分布,开发了一种快速的风力机叶片气动优化设计方法.方法中引入了全自由尾涡模型,通过并行处理技术和快速多极子方法加速计算.采用傅里叶级数参数化叶片附着涡环量分布,大幅减少了优化变量数目.以风能利用系数为目标函数,以给定轴向力系数为约束条件,获得环量分布后反求得到叶片最优几何参数.最后通过优化美国可再生能源实验室(NREL)实验风轮进行方法验证,结果表明:在约束条件下,当尖速比分别为3.79和4.74时,优化使风轮的风能利用系数分别提升了32%和8%.在无约束条件下,针对不同叶片数和尖速比,分别对原NREL风轮进行全局优化,得到了风能利用系数均超过0.48以上的最优设计.   相似文献   
980.
介绍了在Mahr PLM1000型测长机上测量光面环规的基本原理和操作方法。通过与光面环规的传统测量方法进行对比,总结出该方法具有简单方便、测量效率高、误差小等优点,相对于传统的测量方法有着明显的优越性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号