首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  国内免费   8篇
航空   26篇
航天技术   23篇
综合类   14篇
航天   10篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
本文分别对美国及欧洲的静止轨道高分成像卫星发展路径进行详细分析,其中美国主要发展由NASA提出的基于衍射成像原理的薄膜光学成像卫星;欧洲主要发展由ESA提出的地球静止高分辨率任务(Geostationary High Resolution Mission, GEO-HR),GEO-HR包含三个项目:GEO-Oculus(孔径1.5 m,分辨率10m); Astrium GO3S(孔径4m,分辨率3m);光学合成孔径系统(合成孔径7m,分辨率2m)。最后,根据美国及欧洲的静止轨道成像卫星发展的路线,结合我国静止轨道卫星发展现状,分析地球静止轨道高分辨率成像卫星的发展趋势及启示。  相似文献   
62.
The construction of a solar sail from commercially available metallized film presents several challenges. The solar sail membrane is made by seaming together precut lengths of ultrathin metallized polymer film into the required geometry. This assembled sail membrane is then folded into a small stowage volume prior to launch. The sail membranes must have additional features for connecting to rigid structural elements (e.g., sail booms) and must be electrically grounded to the spacecraft bus to prevent charge build up. Space durability of the material and mechanical interfaces of the sail membrane assemblies will be critical for the success of any solar sail mission. In this study, interfaces of polymer/metal joints in a representative solar sail membrane assembly were tested to ensure that the adhesive interfaces and the fastening grommets could withstand the temperature range and expected loads required for mission success. Various adhesion methods, such as surface treatment, commercial adhesives, and fastening systems, were experimentally tested in order to determine the most suitable method of construction.  相似文献   
63.
提出了一种采用高压空气膜除湿组件的飞机新型环境控制系统(ECS).在分析了系统工作原理的基础上,建立了该系统中各主要部件的数学模型,并采用分块建模的思想,开发了该新型环境控制系统的计算机仿真模型库,并与传统高压除水飞机环境控制系统进行了性能仿真比较.仿真结果表明:所开发的模型库具有良好的动态响应性能和稳态值;与传统系统...  相似文献   
64.
本文将壳体微分方程的数学解算过程与其解的物理意义联系起来,结合结构力学中的力法概念,使求解的微分方程分成两组比较简单的形式;一组只求膜解,另一组只求齐次解。这种思路对于一般形式的薄壳均适合。因为锥壳在工程上应用最广,故本文以锥壳为例,列出了锥壳在各种常见的荷载下的计算公式,并应用上述的概念来解算组合锥壳的问题,使原来十分复杂的问题大为简化。  相似文献   
65.
研究了静电驱动的微机械薄膜的稳定性问题。当微机械构件之间的间距在亚微米尺度以下,构件会受到量子效应的影响,如Casimir效应。通过对薄膜在静电力及Casimir力共同作用下的行为进行分析,由数值计算得到了决定薄膜稳定性状态的无量纲参数K及K曲线的临界值Kc,若K值大于Kc,薄膜结构为不稳定,会引起塌陷失效,薄膜粘附在基底上,且不可恢复。Kc值大小与微机械薄膜和基底表面的距离以及外加电压相关。由此提供了设计高长厚比(L/h)的静电驱动薄膜结构的方法,使其不产生失稳塌陷的失效。  相似文献   
66.
采用配合物溶胶-凝胶法制备了具有透氧性能的类钙钛矿结构La2NiO4 δ材料,XRD实验表明为单一相,讨论了控制溶胶-凝胶过程的条件,成功地制得了均匀澄清的稳定溶胶和稳定凝胶,采用Al2O3多孔陶瓷为支撑体,用上述溶胶制备了支撑致密透氧膜,结果表明在孔径为0.2μm的多孔Al2O3陶瓷片上制备的支撑膜比较理想,膜的厚度约为35um,透氧实验结果表明,该支撑膜比传统方法制备的同种材料无支撑膜有更好的透氧性能,由于膜内部的离子传输过程是制约透氧通量的主要因素之一,而支撑膜的厚度远小于无支撑膜,较薄的膜减少了离子在固相中的传输距离,有助于加快这一传输过程,从而可获得较高的透氧通量。  相似文献   
67.
太阳帆航天器的关键技术   总被引:2,自引:0,他引:2       下载免费PDF全文
将太阳帆航天器所涉及的关键技术划分为4个方面:总体设计、轨道和姿态动力学与控制、太阳帆材料及其性能、太阳帆折叠与展开。针对每项关键技术,基于对国外长期研究结果进行分析并阐述主要技术特征,梳理国内相关研究进展,包括笔者与合作者的研究成果,分析存在的主要问题。根据上述分析,指出我国发展太阳帆航天器应该重视的若干问题。  相似文献   
68.
中空纤维膜机载制氮装置的数学建模分析   总被引:2,自引:1,他引:1  
建立了考虑浓差极化现象的微分方程数学模型,并用正交配置法求解,对中空纤维膜机载制氮装置(OBIGGS)进行了分析,并对部分状态点的计算结果进行了实验验证.结果表明:富氮气体(NEA)中氧气的质量分数随着进气温度的升高而降低,在达到最小值后又呈上升趋势;在进气与排气压力差保持不变的情况下,随着中空纤维膜排气压力的下降,中空纤维膜的富氮气体质量流量逐渐增加;随着中空纤维膜丝长度的增加,丝内气体的压降和富氮气体质量流量均有所增加;中空纤维膜空气分离制得的富氮气体质量流量越大,则所需进气的质量流量越大,且富氮气体氧气质量分数越高.   相似文献   
69.
    
碱性聚电解质膜燃料电池(APEMFC)作为质子交换膜膜燃料电池的替代,由于其可以使用非贵金属催化剂、氧还原反应动力学快及成本低等众多优点,近年来获得了长足的发展.作为其中一个关键部件,碱性聚电解质(APE)膜在APEMFC中扮演着重要的角色.然而,由于OH-的淌度明显低于H+,碱性聚电解质膜的性能尤其是电导率相对较低.通过提高聚合物中离子基团的接枝度(GD),获得高的离子浓度可以在一定程度解决这个问题.但是,这种方法往往导致聚合物膜过度亲水溶胀,机械强度大幅下降.由此看来,电导率和溶胀成为了两个影响电池性能的异常重要但又相互矛盾的因素.本文综述了近些年来解决这个矛盾的一些策略,如物理手段、化学交联、离子基团在侧链上的富集以及通过亲水/疏水相分离结构构建高效的离子传输通道等.这些手段都能在一定程度上实现在低的吸水和溶胀下获得高的电导率.  相似文献   
70.
机载中空纤维膜富氮性能实验   总被引:6,自引:4,他引:2  
通过建立机载中空纤维膜环境模拟性能实验平台,对与国内某技术中心合作研制的机载中空纤维膜进行了系统的环境模拟性能实验及分析.实验结果显示:①渗余富氮空气氧体积分数随输入空气压力的上升而下降,随输入流量的上升而上升,而与输入空气温度基本无关;②渗余富氮空气氧体积分数随富氮空气流量的上升而上升,且输入空气压力低时明显;③海拔高度对机载中空纤维膜富氮性能基本不影响,仅启动时渗余富氮空气氧体积分数略有下降.通过采用多元回归方法,得到有一定普遍意义的机载膜富氮性能公式.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号