首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   7篇
  国内免费   36篇
航空   94篇
综合类   29篇
航天   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   12篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1989年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
51.
矩形截面S弯扩压器旋流的研究   总被引:1,自引:0,他引:1  
本文给出了不同进口条件下矩形截面S弯扩压器内旋流场的实验研究结果。在实验中测量了扩压器进口和出口的横向流速分布。当改变扩压器进口高度方向的横向流速度时,在出口截面的横向流一般呈S形状,只是在进口高度方向横向流速度的平均值达到上游导流段平均速度的30%左右时,出口截面才出现单一的旋转流场。研究表明,扩压器出口截面的旋流系数与进口或第二弯出口截面上下壁面静压系数之差有一定的规律关系。这预示着S弯进气道中旋流的大小可以用很简单的静压系数进行监测。  相似文献   
52.
三种不同的进气道与弹体组合体雷达散射截面特性   总被引:3,自引:0,他引:3  
对三种不同进气道与弹体组合所得的三个模型进行了雷达散射截面(RCS)实验研究,三种组合分别为:埋入式进气道与多边形截面弹体的组合,埋入式进气道与常规圆截面弹体的组合、S弯进气道与常 圆截面弹体的组合,雷达散射截面特性实验和对比研究表明:圆截面弹身时,采用埋入式进气道比采用S弯进气道具有更好的隐身效果;采用埋入式进气道时,多边形截面导弹比圆截面弹身隐身性能更好。可以推断,多边形截面弹体与埋与式进气道的组合具有光明的应用前景。  相似文献   
53.
蛇形进气道地面工作状态附面层抽吸试验研究   总被引:5,自引:0,他引:5  
对一种蛇形进气道开展了地面工作状态下的抽吸试验研究,结果表明,在该状态下进气道出口截面的总压恢复系数较低、流场畸变较大。为此,本文采用附面层抽吸技术对其进行了地面抽吸状态下的流场控制试验研究。研究结果表明:(1)地面工作状态下,随着出口马赫数的增加,蛇形进气道出口截面的总压恢复系数不断下降,而稳态周向畸变指数、紊流度和综合畸变指数均上升,稳态径向畸变指数变化不大。本研究的蛇形进气道在出口马赫数为0.45时,总压恢复系数为0.90,综合畸变指数为13.85%,总压恢复较低,畸变较大,超出了一般航空发动机的承受范围。(2)与原型方案的地面抽吸试验结果相比,采用附面层抽吸技术后,进气道出口截面的总压恢复系数得到了提高。在出口马赫数为0.45,相对抽吸量为0.043时总压恢复系数提高了2.6%。  相似文献   
54.
S弯扩压器内旋流的监测参数   总被引:1,自引:0,他引:1  
郭荣伟 《航空学报》1985,6(5):489-491
 一、实验模型和设备 研究用的实验模型为一个带有进气导流段的矩形截面S弯扩压器(见图1)。进气导流段设有可更换部分,使导流段相对扩压器的角度在攻角方向由0°变为5°、10°、15°、30°、45°或60°,以改变扩压器进口截面的气流条件。导流段的进口采用了ρ=60sin2α的双纽线外形。模型设计及其详细的几何尺寸见文献[1]。  相似文献   
55.
一种受总体限制的弹用S弯进气道的设计和实验验证   总被引:6,自引:1,他引:6  
在飞行器总体对发动机进气道长度、偏距和相贯位置有特定要求及叉形弹翼根部空间的限制情况下,设计了一种大偏距、短扩压的S弯进气道。进气道的设计特点是在唇口后保证有尽可能长的S弯扩压段,扩压段在采用合理的中心线变化规律和面积变化规律的情况下,通过变宽度的方法确定截面形状,以满足总体要求。风洞模型实验结果表明:1.进气道具有良好的气动性能,高的总压恢复系数(σ>0.985),较低的周向稳态总压畸变指数(Δσ0<1.0%)和径向稳态总压畸变指数(Δσp<2.8%);2.在一定马赫数下,进气道性能对正攻角和偏航角不敏感,仍保持高的总压恢复系数和低的畸变;3.进气道出口气流紊流度较低(—Tu<2.5%),因此进气道出口截面的总畸变指数低(w<3.0%)。  相似文献   
56.
 针对一种Ma4一级定几何混压式超声速轴对称进气道进行了数值仿真研究,并和风洞实验结果进行对照,验证了本文所采用计算方法的可靠性。利用CFD方法获得了进气道激波系分布、内通道流场分布和沿程静压分布并对Ma4下稳定亚临界状态进行了分析。研究结果表明:(1)超临界状态下,随着进气道出口反压的提高,结尾激波系向喉道方向移动,结尾激波损失减小,总压恢复系数提高;(2)攻角的增加对进气道的迎风侧和背风侧影响增大,结尾激波系由对称分布向一边倾斜的趋势增大,背风侧的承受反压能力下降,总压恢复系数随着下降;(3)随着来流马赫数的增加,激波损失加大,总压恢复系数随之下降,同时由于激波角变小,激波也越靠近外唇罩,溢流减小,流量系数增大,在激波贴口后流量系数基本保持不变;(4)通道内的静压分布曲线清晰的反映了内通道沿程激波系情况;(5)在大于贴口Ma数工作时,结尾激波系被推出唇口的情况下,由于滑流层作用出现一个类似外压缩式的气动通道从而存在稳定的亚临界状态。  相似文献   
57.
平面埋入式进气道的数值仿真研究与试验验证   总被引:6,自引:0,他引:6  
通过对比平面埋入式进气道的流量特性、攻角特性和侧滑角特性的计算和试验结果,验证了本文数值方法的可靠性。在此基础上,利用CFD技术分析了其出口总压图谱的成因,探讨了该类进气道的内流场结构并分析了弹身附面层的影响。研究结果表明:(1)本文所采用的数值分析方法具有较高的精度,所预测的进气道出口截面总压恢复系数的相对误差在1%以内;(2)计算所得到的进气道出口截面高压区位置以及范围大小与试验结果相当吻合,但低压区范围稍大;(3)平面埋入式进气道沿程截面二次流的速度较大,表现为一对反向对涡。随着沿程截面的由前而后,该对涡的影响区域不断扩大,直至整个内通道中;(4)埋入式进气道出口截面的总压损失可分为管道外部损失和管道内部损失两部分。研究范围内进气道的外部总压损失要大于内部总压损失,且随着进气道平均出口马赫数的增高,外部总压损失和内部总压损失均逐渐降低。此外,当攻角从-2°变化到8°时,由于进入进气道内的附面层气流减少,管道外部总压损失不断下降,而其内部总压恢复系数的变化趋势并不明显,因而总压恢复系数随着攻角的增加而增加。  相似文献   
58.
一种固冲组合发动机进气道通气减阻方案的特性研究   总被引:5,自引:0,他引:5  
谭慧俊  郭荣伟  万大为  韩东 《宇航学报》2003,24(2):185-189,216
提出了一种适用于整体式固体火箭冲压发动机的进气道通气减阻方案,并以矩形截面通气口高度、长度为变量进行了数值模拟实验,得到了其对阻力系数的影响规律。还给出了最佳通气方案的阻力系数随马赫数的变化规律,并与原始模型、进气口加堵盖方案进行了比较。最后结合一种具有常规气动布局的飞行器外形设计了模型,并对其进行了数值模拟研究和吹风实验,验证了方案的有效性和数值计算方法的可靠程度。  相似文献   
59.
双下侧布局带泄流腔二元进气道试验   总被引:18,自引:2,他引:16  
针对一种双下侧布局带泄流腔的二元进气道进行了试验研究.试验时,来流速度范围Ma=2.0~3.5,姿态角范围为α=-4°~10°,β=0°~4°.试验获得了进气道的反压特性曲线、速度特性曲线、迎角特性曲线和侧滑角特性曲线.分析表明,随着来流速度和迎角的增加,进气道的流量系数先增加,在设计点达到最大,之后由于弹身头部激波的影响略有减小.侧滑时两侧进气道气流状态不同,工作范围由性能较低的迎风侧进气道来决定.另外,通过分析进气道的沿程静压分布曲线,说明泄流腔结构能使结尾激波停留在泄流腔边缘,扩大了进气道的工作范围.   相似文献   
60.
一种前体加宽型高超声速进气道试验方案研究   总被引:2,自引:0,他引:2  
袁化成  郭荣伟 《航空学报》2012,33(4):617-624
 根据矩形截面高超声速进气道前体的流动特征,对一种前体加宽型高超声速进气道试验方案开展了数值仿真及高焓风洞试验研究。首先,对不同前体宽度的高超声速进气道开展了三维数值仿真研究,结果显示:随着前体宽度的增加,进气道的流量系数和静压比逐渐增加,而总压恢复系数和隔离段出口马赫数逐渐减小,表现为先急后缓,且当来流马赫数和来流攻角变化时依旧保持上述变化规律。其次,对前体加宽型高超声速进气道试验方案开展了高焓风洞试验研究,结果表明:加宽前体可有效地提高进气道的流量系数,较为真实地反映此类进气道的流动特征,试验结果与数值仿真结果吻合较好。考虑到进气道性能参数随前体宽度变化规律表现为先急后缓,建议在试验条件下前体宽度比取0.5~0.8之间较为适宜。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号