首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   18篇
航天技术   8篇
航天   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   5篇
  2007年   1篇
  2004年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1982年   2篇
  1971年   1篇
排序方式: 共有30条查询结果,搜索用时 500 毫秒
21.
Ceylan  Savas  van Driel  Martin  Euchner  Fabian  Khan  Amir  Clinton  John  Krischer  Lion  Böse  Maren  Stähler  Simon  Giardini  Domenico 《Space Science Reviews》2017,211(1-4):595-610

The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green’s functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green’s functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.

  相似文献   
22.
Aspects of high-power high-voltage power conditioner design and weight estimation relevant to space subsystems are discussed. Weight has become an increasingly important parameter with the advent of larger and more sophisticated spacecraft, especially those for high-power communication. A computer program for estimating the weight of a high-power dc-to-dc power conditioner as functions of output power, operating frequency, input voltage range, maximum input voltage, and efficiency, respectively, is described, including computer-aided design of inductors and transformers. Curves of typical power conditioner weight as functions of the preceding parameters, derived from the power conditioner weight program, are presented.  相似文献   
23.
为研究电路参数对SAW相关器输出信号的影响,建立了一种把SAW相关器和包络检波器视为一体的数学模型,通过对SAW相关器进行计算机模拟分析,给出了本地参考信号的格式、相关峰顶点检测方法、本地参考信号中心频率偏差和码元宽度误差的允许范围,并给出了相关峰的实验结果,与模拟计算机结果做了对比,在此基础上完成了扩频信号相关解调解扩电路的设计。  相似文献   
24.
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.  相似文献   
25.
Liulin-5 is a particle telescope developed for the investigation of the radiation environment within the Russian spherical tissue-equivalent phantom on the International Space Station (ISS). Liulin-5 experiment is conducted aboard the Russian segment of ISS since 28 June 2007 as an adherent part of the international project MATROSHKA-R. The main objective of Liulin-5 experiment is to study the depth-dose distribution of the different components of the orbital radiation field in a human phantom. Additional objectives are mapping of the radiation environment in the phantom and its variations with time and orbital parameters (such as solar cycle, solar flare events, inclination and altitude). Liulin-5 is an active instrument, capable to provide real-time radiation data for the particle flux and dose rates, energy deposition and LET spectra. Data are recorded automatically on memory cards, periodically transported to ground by returning vehicles. In this report we present some first results from data analysis including energy deposition spectra, absorbed dose, dose rate and flux distribution measured simultaneously at 3 different depths of phantom’s radial channel and linear energy transfer (LET) spectrum. Data discussed are for the period July 2007–April 2008.  相似文献   
26.
Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)   总被引:2,自引:0,他引:2  
The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R), two traditional Lyot coronagraphs (COR1: 1.5–4 R and COR2: 2.5–15 R) and two new designs of heliospheric imagers (HI-1: 15–84 R and HI-2: 66–318 R). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.  相似文献   
27.
The Solar Terrestrial Relations Observatory (STEREO) is primarily a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. The data which will be telemetered down in the Space Weather Beacon is also summarized here. Some of the lessons learned from integrating other NASA missions into the forecast center are presented. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.  相似文献   
28.
The STEREO Mission: An Introduction   总被引:4,自引:0,他引:4  
The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.  相似文献   
29.
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.  相似文献   
30.
Loison A  Dubant S  Adam P  Albrecht P 《Astrobiology》2010,10(10):973-988
Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H(2)S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号