首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   177篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2015年   5篇
  2014年   23篇
  2013年   18篇
  2012年   13篇
  2011年   8篇
  2010年   15篇
  2009年   19篇
  2008年   17篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有200条查询结果,搜索用时 328 毫秒
141.
利用二维低纬电离层-等离子体层时变理论模式,模拟太阳活动高年春分条件下垂直漂移和中性风强度改变对低纬F区电离层参量的影响.模式在所考察的磁子午面内求解等离子体输运方程,给出离子浓度和速度随纬度、高度、地方时的变化.模式计算结果显示,调整垂直漂移和中性风强度对低纬F区电离层电子浓度的影响与电离层所处磁纬、垂直漂移和中性风作用时段等有关,呈现出一些新特点.结果对分析不同条件下垂直漂移和中性风对低纬F区电离层影响具有一定的指导意义.   相似文献   
142.
用高分辨率地磁资料考察磁层耦合的特征   总被引:2,自引:0,他引:2  
用取自100°E和300°E的两条地磁经度链附近11个台站的1min均值地磁资料,分析了1994年11月26日磁暴期间的磁扰特征,由H和Z分量变得知,一区和二区场向电流的变化发展是磁层-电离层电动耦合中的重要过程,它们对于极光区和中纬区电离层的作用效果有很大差异。  相似文献   
143.
论述了应用色散多普勒技术,在求解测站上空大面积TEC的方法中,卫星相对测站径向速度变化对电离层产生的微分多普勒频移的影响,找到了比较好的修正方法,并对若干测量计算结果进行了由定性到定量分析,绘出了测站上空任一点TEC的日变化曲线。   相似文献   
144.
We used the TEC (Total electron content) data of 5 min resolution obtained from the Madrigal database during solar-maximum winter (Nov. 6, 2000–Feb. 4, 2001) to study statistically the polar ionospheric plasma distribution response to different intensity and orientation of IMF By/Bz components. The sunlit high-density plasma extension from dayside to nightside is favored in negative IMF By and Bz conditions. With the magnitude of the negative Bz increasing, the time range corresponding to the distinct high-density extension feature expands, and the plasma density along the extension path enhances, which can be attributed to the interaction between dayside solar-produced ionization whose poleward limit is decided by terminator and convection extent mainly modulated by IMF Bz component. As for IMF By component influence on the sunlit plasma extension, the combination effect of convection and corotation electric fields is necessary to be considered.  相似文献   
145.
Ionospheric response during the annular solar eclipse of June 21, 2020, has been examined in terms of the Total Electron Content (TEC) obtained from six Global Positioning System (GPS) receivers positioned in the Chinese-Taiwanese region. We have shown TEC variation from satellites designated by PRNs (Pseudo-Random Noise code) 2, 6, and 19. PRN wise TEC trend was observed to depend upon satellite-pass trajectory to the receiver's location during the eclipse period. A time lag of ~15–30 min is also observed in maximum TEC decrement after the phase of maximum eclipse. Instead of the percentage of eclipse magnitude, a reduction in TEC is seen more for the station for which the orbital track of respective satellites was in closer view relative to receivers for more hours of eclipse window. Additionally, the eclipse day diurnal variations are compared with the pre-eclipse day TEC trend, and observed results show a clear decrease in TEC values at all chosen stations after the eclipse onset then reached the lowest value a few minutes afterward the maximum eclipse phase.  相似文献   
146.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   
147.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   
148.
As the prevailing tidal winds in the E region are generated by heating mechanisms, the dynamics of Es layers impacted by solar tides is a relevant theme in the space weather studies. This paper aims to identify the tidal wind component involved in the mechanism of formation and descending of the high type of sporadic layer (Esh). The Esh layers observed at altitudes between around 120 and 150 km in the Brazilian low latitude stations of Jataí and São José dos Campos during the months of April, June, September and December of 2016 are used in this analysis. The height variability and altitude descent of the Esh layers are analyzed from the h′Es parameter obtained by ionosonde data. In this study, the observational data are compared with the simulations generated by an extended version of the Ionospheric E-Region Model (MIRE). At higher altitudes in the E region, the results show that the prevailing tidal pattern and wind direction controlling the Esh layer formation and descent are different depending on month: (a) in April and June the zonal wind component and the associated semidiurnal tidal oscillations prevail, with some differences in terms of time of occurrence and descending speeds, and (b) in September and December the diurnal tidal periodicities become dominant, and both the meridional and zonal wind components seem to control the descending of the Esh layers. Since the role of the tidal periodicities and wind directions changed depending on the month, the results suggest a possible seasonal tidal wind pattern, which is not well understood from the present study but requires further investigation. Other relevant aspects of the observations and the modeling are highlighted and discussed.  相似文献   
149.
Ionograms recorded at Puer station (PUR, 22.7°N, 101.05°E, Dip Latitude 12.9°N) in the Southwest of China from January 2015 to December 2016 were used to study characteristics of the F2 layer stratification at the northern equatorial ionization anomaly. Ionosonde observations show that the development of the F2 layer stratification is different under different conditions. Both the upward and downward movement of the F2 layer stratification could be observed. The F2 layer stratification could occur both at daytime and nighttime. The new cusp could originate from different positions on ionograms. Moreover, statistical results indicate that the F2 layer stratification occurred later in the winter than in other seasons at daytime, it occurred frequently in the local spring, and most of ionograms with the F2 layer stratification at post-midnight occurred in March and April. Our results also show that the F2 layer stratification has a correlation with solar activity.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号