首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   1篇
  国内免费   2篇
航空   101篇
航天技术   51篇
综合类   2篇
航天   87篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   19篇
  2008年   9篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   4篇
  1967年   8篇
  1966年   5篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
101.
Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission   总被引:6,自引:0,他引:6  
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.  相似文献   
102.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   
103.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   
104.
Book reviews     
Space Science Reviews -  相似文献   
105.
Current control approaches for solar sail station-keeping on libration point orbits have not considered the degradation of the sail’s optical properties. However, significant optical degradation could lead to poor station-keeping performance or even complete failure. This paper presents an integrated guidance and control strategy to address this problem by updating the reference orbit based on in situ estimation. An exponential optical degradation model is incorporated into the solar radiation acceleration model, and an on-line reference orbit update approach is incorporated into the station-keeping, coupled with an active disturbance rejection controller. The reflection coefficient is estimated on-line and the reference orbit is updated discretely when the optical properties have degraded by a prescribed amount. This strategy provides discrete updates to the reference orbits such that the perturbation due to the optical degradation is maintained within a small range. These smaller perturbations can be dealt with by the controller’s robustness and station-keeping can be sustained for long durations even in the presence of large optical degradation.  相似文献   
106.
We present the major observationally-derived requirements for a solar flare particle acceleration mechanism, briefly discuss some general electrodynamic constraints that also need to be considered, and suggest a unified electron and ion acceleration theory. This theory consists of two elements: cascading MHD turbulence generated at large scales during the primary flare energy release, which is responsible for the energization of electrons and all ions except 3He, and an electron beam, which excites the waves necessary for 3He acceleration. An issue of special importance for understanding ion acceleration is the convincing measurement of the charge state of Fe, which can be accomplished by the Advanced Composition Explorer in the upcoming solar maximum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
107.
基于性能的后勤保障(PBL)是美国国防部提出并大力推广的装备保障新理念.它强调将保障作为一个综合的、可承受的性能包来购买,以便优化系统的战备完好性.经过多年的推广,PBL在使用中取得了较好的效果.  相似文献   
108.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   
109.
Two new fourth-order non-singular analytical theories for the motion of near-Earth satellite orbits with air drag are developed for low- and high-eccentricity orbits in an oblate atmosphere with variation of density scale height with altitude. Uniformly regular Kustaanheimo–Stiefel (KS) canonical elements are utilized for low-eccentricity orbits and KS element equations are employed for high-eccentricity orbits. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The analytical solutions are compared with the numerically integrated values up to 100 revolutions, and found to be quite accurate over a wide range of eccentricity, perigee height and inclination.  相似文献   
110.
Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss – primarily due to the absence of loading in microgravity – is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and – when integrated with other countermeasures – exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号