首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2522篇
  免费   527篇
  国内免费   376篇
航空   2004篇
航天技术   386篇
综合类   324篇
航天   711篇
  2024年   14篇
  2023年   77篇
  2022年   98篇
  2021年   131篇
  2020年   117篇
  2019年   129篇
  2018年   105篇
  2017年   119篇
  2016年   127篇
  2015年   121篇
  2014年   145篇
  2013年   125篇
  2012年   141篇
  2011年   170篇
  2010年   160篇
  2009年   154篇
  2008年   143篇
  2007年   126篇
  2006年   116篇
  2005年   116篇
  2004年   109篇
  2003年   103篇
  2002年   80篇
  2001年   96篇
  2000年   72篇
  1999年   59篇
  1998年   65篇
  1997年   51篇
  1996年   63篇
  1995年   36篇
  1994年   40篇
  1993年   52篇
  1992年   32篇
  1991年   43篇
  1990年   28篇
  1989年   31篇
  1988年   17篇
  1987年   9篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
排序方式: 共有3425条查询结果,搜索用时 15 毫秒
11.
为降低天线副瓣电平(SLL)和展宽带宽,设计了一款谐振频率为14.25 GHz的16阵元非均匀间距的耦合馈电微带阵列天线。天线采用多层设计,通过在接地板开矩形槽进行耦合馈电,并引入空气层,降低天线Q值,增大带宽。区别于均匀间距阵列天线的激励幅值加权,从阵元间距角度入手,利用差分进化算法降低副瓣电平,构建非均匀间距并联线阵天线。用槽面辐射的能量近似代替阵元接收的能量,观察阵元功率分配情况,并建立馈电网络所有馈线段的数学关系,保证非均匀间距条件下所有阵元为等幅同相激励。测试结果显示,天线在14~14.5 GHz范围内电压驻波比小于2,满足了卫星动中通的带宽要求;工作带宽内增益大于16 dB,副瓣电平低于-16 dB,性能优于均匀间距阵列天线。   相似文献   
12.
刘景源 《宇航学报》2018,39(8):935-942
应用理论分析与数值模拟方法,将对流传热的场协同原理从不可压缩流动推广至高超声速化学非平衡流动中。结果表明,高超声速化学非平衡层流与湍流的热流密度取决于流动的当地单位体积的动量与单位质量总焓梯度的协同。用当地单位体积的动量与单位质量总焓梯度的协同研究高超声速化学非平衡流动的壁面传热问题,对层流流动下的对流传热,不但计及了高超声速化学非平衡流的密度变化对热流密度的影响,而且包括了静焓梯度、压力梯度、边界层内的分子黏性剪切效应对热流密度的作用;对湍流问题,除了上述层流流动各项对热流密度的影响外,还计及了雷诺剪切应力对热流密度的作用。考虑到高超声速化学非平衡流静焓的定义,高超声速化学非平衡层流及湍流的场协同同时计及所有组分的平动能、转动能、振动能及电子能等梯度的贡献。  相似文献   
13.
介绍了临近空间大气环境特点及其非局域热平衡状态的辐射传输计算方法。利用战略高高度辐亮度代码SHARC(Strategic high-altitude radiance code),计算了3—5 μm波段不同观测条件、光学现象及大气环境下的临近空间大气背景辐射。分析结果表明:临近空间中波红外辐射随观测天顶角的增大而增强,随太阳天顶角的增大而减弱;在38 km及75 km附近,临边背景辐射存在极大值;纬度越高,临边背景辐射的季节变化特征越明显。OH夜气辉和极光对背景辐射有重要增强作用。  相似文献   
14.
相较于传统大卫星,微小卫星具有结构紧凑、质量轻便和成本低廉的特点。然而,受功率和质量负载的限制,微小卫星一般不装备推进系统,其航线也局限于近地轨道。为扩展微小卫星的功能,满足日益复杂的任务需求,需给其配备合适的微推进系统。固体推进系统具有结构简单、寿命长、可靠性高的优点,但无法重复启动。为得到可重复启动的固体微推进系统,设计了一种非自持燃烧的光敏推进剂,采用激光控制其燃烧。在背压为大气压的环境下,利用高速摄像机拍摄燃烧过程并记录燃速。之后,对光敏推进剂的激光烧蚀过程进行建模。分析结果表明:激光可控制光敏推进剂的燃烧,燃速与激光强度成线性关系;该光敏推进剂的最小激光点火强度为0.28 W/mm~2;燃速计算值与实测值的误差在10%以内,证明该数学模型具备工程应用价值。  相似文献   
15.
针对基于格心格式求解器的旋翼流场模拟,提出了相应的自适应笛卡尔网格的数据存储结构及自适应算法。给出了相应的单元处理策略,简化了对自适应笛卡尔网格的处理;对于频繁的自适应加密过程中产生的大量重复点,采用了高效的交替数字树算法(Alternating digital tree,ADT)予以删除;对于自适应疏化过程中产生的大量无用点,提出了标记-删除-移动(Mark,delete,move,MDM)算法予以快速地删除,减少了不必要的计算资源消耗。对CaradonnaTung旋翼在不同悬停状态下进行了模拟验证,对比了压力分布系数与桨尖涡位置。之后对HELISHAPE 7A旋翼在前飞情况下进行了模拟验证,计算值与实验值吻合。此外,求解器对桨尖涡的捕捉效果得到了明显的提高,表明本文方法具有良好的有效性与鲁棒性。  相似文献   
16.
为了实现航空发动机燃油喷嘴上的螺旋槽特征的快速与精确检测,提出了螺旋槽的槽深、螺旋角和槽宽等参数的测量与计算方法,并基于此设计和搭建了一套非接触式的燃油喷嘴螺旋槽精密测量系统。该测量系统基于模块化的设计思想,其机械主体采用立柱移动型三坐标测量机的结构形式;运动机构由三个直线轴X、Y和Z以及一个回转轴A构成,电气控制模块采用了由上位机与下位机构成的主从控制方式,前端传感器选用了新型的锥光偏振全息激光测头,并应用专用夹具来实现被测喷嘴零件的装夹和定位。最后,选取某个燃油喷嘴样件作为被测目标,应用所搭建的测量系统对其上的多个螺旋槽特征开展了重复测量实验,并解算得到了槽深、螺旋角和槽宽的几何尺寸,而且系统所达到的测量精度能够满足检测需求。  相似文献   
17.
目标检测作为计算机视觉领域的热点问题,目前基于深度学习的目标检测方法可以分为2类:两步检测和一步检测,前者有着较高准确性,后者有着较好速度,但是为提高检测的性能两者都引入了锚机制。为提高目标检测系统的性能,基于深度卷积神经网络的两步检测算法引入了注意力引导(AG)模块,通过对候选区域网络(RPN)的锚机制进行引导,使得对于预选锚框形状的选择更具有多样性;同时针对传统的后处理方式非极大值抑制(NMS)算法存在的误检和漏检的问题,提出了一种置信度因子的NMS(Cf-NMS)算法,对于模型的整体性能有着很大的贡献。实验结果说明,所提方法虽然在速度性能上有略微的下降,但是无论是在RPN变体还是现有的先进算法在准确性方面都有提升。   相似文献   
18.
于妍妍  张远  高丽敏  曲抒旋  吕卫帮 《航空学报》2019,40(10):422900-422900
通过浮动催化化学气相沉积法制备连续碳纳米管薄膜,并将其原位沉积到单向碳纤维织物表面,手工铺层后借助真空辅助树脂传递模塑成型(VARTM)工艺制备碳纳米管-碳纤维/环氧树脂复合材料层压板,研究不同面密度的碳纳米管薄膜对层压板Ⅱ型层间断裂韧性的影响。结果表明,随着碳纳米管薄膜面密度的增加,层压板Ⅱ型层间断裂韧性先逐渐提高,当碳纳米管薄膜面密度为9.64 g/m2时,层压板Ⅱ型层间断裂韧性最佳,与原始层压板相比提高了94%。碳纳米管通过桥接树脂裂纹、从树脂中拔出等方式提高层间断裂韧性。当碳纳米管面密度超过临界值时,会引起树脂浸润困难,导致增韧效果降低。  相似文献   
19.
为了验证周向单槽机匣处理调控高压涡轮叶尖泄漏流的效果,本文在GE-E3高压涡轮第一级的机匣上引入周向单槽式机匣处理,通过数值模拟手段研究了周向单槽的轴向位置、槽宽和槽深对叶尖泄漏流调控的影响及周向单槽调控叶尖泄漏流的物理机制。结果表明:周向单槽的引入虽然会使叶尖泄漏涡尺寸变大,但会显著降低叶尖泄漏涡及机匣通道涡的强度,使得涡轮转子通道内流动总损失降低,涡轮级效率提高。在设计工况下获得的最优结构参数的周向单槽,可以使涡轮转子通道内的流动损失相对减小9.10%,涡轮转子的效率提高0.40%,级效率提高0.85%。同时发现设计工况下获得的最优结构参数的周向单槽结构,在非设计工况时也有良好的控制效果。  相似文献   
20.
介绍了300 MVA脉冲发电机组的滑差装置。对机组采取滑差方式的起动过程进行了分析和等效建模。根据机组实际起动过程电气波形,利用非线性规划模型,建立了滑差装置液体电阻等效仿真模型,并代入机组参数对起动过程进行仿真,仿真结果和实际波形吻合,验证了模型的正确性。在此基础上,为了使机组的转速达到额定转速,提出在滑差装置液体电阻低位时并入两级固体金属电阻后短接的方案,给出了两级固体金属电阻的阻值等理论参数,并通过仿真验证了方案的可行性。建立的仿真模型可以作为研究不同参数、不同控制策略下的机组起动过程动态特性的重要工具。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号