首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   9篇
  国内免费   1篇
航空   14篇
航天   14篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
排序方式: 共有28条查询结果,搜索用时 156 毫秒
11.
低温推进剂长期在轨压力管理技术研究进展   总被引:2,自引:0,他引:2  
刘展  厉彦忠  王磊 《宇航学报》2014,(3):254-261
  相似文献   
12.
王磊  上官石  刘柏文  雷刚  陈强  厉彦忠 《宇航学报》2022,43(11):1566-1574
针对甲烷采用液氮过冷可能发生甲烷冰堵风险,提出了在甲烷中添加乙烷,制备凝固温度更低的甲烷-乙烷混合推进剂的新方案,搭建实验系统测试了甲烷-乙烷凝固温度变化规律。研究发现,随着甲烷含量提高,混合推进剂凝固温度先降低后升高。当甲烷、乙烷比例为0.71∶0.29时,混合推进剂达到最低凝固温度,约73.0 K。当采用常压饱和液氮对混合推进剂过冷时,控制甲烷含量在0.52~0.81间可避免推进剂冻结。相较于常压饱和甲烷,防冻结区的混合推进剂密度提高了24.0%~38.4%,液相存在温区增大至35.7 K~40.5 K。此外,甲烷-乙烷混合推进剂具有理论比冲高、再生冷却性能佳、结焦与积碳小等优势。所提出的甲烷-乙烷混合推进剂在火星探测等任务中具有可观的应用前景。  相似文献   
13.
刘展  杨云帆  陈虹  厉彦忠 《宇航学报》2021,42(11):1462-1474
Cryogenic propellant usually experiences long term on orbit storage. The pressure increase in cryogenic storage tank is faced by most of space missions. The thermodynamic vent system (TVS) is treated as the promising method to control the increase of the tank pressure by scholars both at home and abroad. Based on the investigation conducted by different research agencies, literature review and management are conducted to reflect the recent research statue on TVS. The development profile of the experimental research on the pressure control performance of TVS is specially summarized. The condition setting and performance difference of TVS conducted by different agencies are compared and analyzed. The key technique and related conclusion are refined during the operation of TVS. Finally, based on the requirement of the large scale using of cryogenic propellant in deep space exploration in China, the development plan is proposed on the aspect of TVS pressure control on cryogenic storage tanks.  相似文献   
14.
为研究重型运载火箭液氧管道中的间歇泉现象并设计有效的抑制方法,调研分析了不同领域中间歇泉的研究现状及低温领域间歇泉的特点。揭示了低温推进剂管道中间歇泉的动态特性和产生机理,提出了重型运载火箭间歇泉抑制方法。研究表明:1)低温领域发生间歇泉的管道结构参数、热流输入方式、液体性质与其他领域相比有较大不同;2)减压沸腾是间歇泉产生的主要原因,弹状气泡不是低温管道中产生间歇泉的必要条件;3)间歇泉过程中会出现剧烈的压力降低和突增现象,在恶劣工况下压力波动可达兆帕量级;4)根据重型火箭的管路布局方式,可选择氦气注入或者外界热流引起循环流动的方法来抑制间歇泉。  相似文献   
15.
刘展  厉彦忠  王磊 《宇航学报》2015,36(6):613-623
通过详细分析热分层产生的机理,阐述了低温流体热分层所引起的流体温度分布、气液界面现象以及箱体压力增加过程。对有关流体热分层的试验研究以及数值模拟的文献进行了整理;对不同低温流体工质、箱体初始设置参数及尺寸参数、箱体形状、壁面曲率大小、壁面是否加肋片以及箱体晃动旋转等对热分层的影响进行了分类总结;对不同热分层数学物理模型进行了系统对比。介绍了不同重力水平下,流体流动状态与热分层的关系。归纳了有关热分层现象的一些重要结论,阐明了我国在该领域开展研究的必要性。最后指出低温流体热分层对推进剂箱体优化设计及安全运行的重要意义。  相似文献   
16.
针对液氧煤油补燃发动机液氧预压泵和主泵间管路富氧燃气掺混冷凝现象,建立了大过热度下富氧燃气和液氧两相流动掺混冷凝特性的全三维数值仿真方法,并以常温制冷剂R123为工质,通过气液掺混冷凝实验验证了数值仿真模型对管内两相流型和气液再液化性能的精确预测能力。仿真结果表明:弯管段气液两相在离心力作用下发生横向相对流动,强化了相间热质交换;在较低的液体流速(1m/s)下,气体水平注入管路后形成一个与气孔相连接的局部气腔,注气速率低于80m/s时,气腔一侧贴在管路内壁上,注气速率超过100m/s后气腔脱离管路内壁面。气相在气腔下端被撕裂成离散的气泡,随液体向下游流动并逐渐冷凝。在实际工况下管路的富氧燃气没有全部完成再液化过程,此时流体状态会对液氧主泵造成气蚀影响。  相似文献   
17.
液体推进剂在轨加注技术与加注方案   总被引:1,自引:0,他引:1  
梳理了推进剂空间加注的关键技术,介绍了不同流体空间加注的系统组成与加注程序,提出了我国开展相关研究的思路.研究表明:①气液相分离是实现推进剂空间加注的基础,常温推进剂可采用挠性隔膜或叶片式贮箱实现气液分离,而金属网状膜通道式液体获取装置(LAD)在低温流体空间分离领域效果最佳;②低温推进剂空间加注需要结合空间热防护技术、蒸发量控制技术等;③常温推进剂采用排气型空间加注,低温推进剂采用无排气加注,且可借助热力学排气系统实现大充灌率加注;④我国可按照先常温后低温的思路开展研究,并充分借鉴现有实验平台与研究成果的支持.   相似文献   
18.
低温流体节流过程空化现象的形成与发展规律   总被引:1,自引:0,他引:1  
文章将RNG 湍流模型与完全空化模型相结合,对孔板节流所导致的低温流体空化流动进行数值模拟,得出了流场中的含气率与压力分布的变化规律。数值模拟研究还发现:由于孔板节流作用使得流场中最低压力出现在孔板喉部,并在此位置出现空化初生点;在低温空化流动中,泡状空化、云状空化、超空化3种空化形态相继出现。分析了空化初生点的压力以及含气率的变化规律,得出了3种空化形态的气相组成;分析了3种空化形态的初生标志,对临界空化状态进行了界定。  相似文献   
19.
回流口位置对液体火箭液氧贮箱热分层的影响   总被引:3,自引:2,他引:1  
低温液体火箭射前需要采用自然循环方式对火箭发动机进行充分预冷,循环预冷管路的回流口位置是影响液氧贮箱内部场分布的重要因素.采用计算流体力学(CFD)技术,通过对不同回流位置的液氧贮箱物理场的数值模拟,揭示了贮箱内部温度场及速度场的分布特性,分析了回流口位置对贮箱内部热分层的影响规律.研究表明,当回流口位于下封头以上2 m位置时,贮箱内部液氧过冷度最大,过冷液体含量最多,回流位置最佳.此研究结果为运载火箭推进系统的设计提供了重要的理论支持.   相似文献   
20.
近年来,低温推进剂在火箭推进领域得到了广泛应用,针对液氧、液氢以及液甲烷等低温推进剂的研究也得到了深入开展。然而,有关低温推进剂热力学性能的研究虽有开展,但各种推进剂性能的特点和差异缺乏研究,对低温推进剂的热力学性能缺乏综合性分析研究和系统认识。统计了1960年以来火箭推进剂的使用以及按照火箭级应用分布情况,对低温推进剂在火箭推进领域的应用与发展进行系统性综述。从低温推进剂的基础热物理性质出发,面向航天推进应用,对不同低温推进剂的动力特性、传输特性、贮存特性以及致密化特性4个方面进行综合评估。结果表明:液氢推力特性最好,氢氧发动机理论比冲可达457 s。相同管路和工况条件下,液氢流动阻力最小,液氧流动温升最小,液甲烷流动阻力和温升特性表现居中。以管长为10 m、管内径为0.1 m的加注管路为例,液氢流动压降小于5 kPa,液氧流动温升小于0.5 K。在地面停放过程中液氧和液甲烷温升小,贮箱增压慢,同时液甲烷热分层现象较弱。对于高5 m、直径3 m的圆柱形贮箱来说,当外界热流密度为50 W/m2时,液氢温升可达4.83 K,液氧仅为1.93 K;液氧贮存周期可达36...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号