首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   22篇
  国内免费   2篇
航空   28篇
航天技术   102篇
综合类   1篇
航天   39篇
  2023年   5篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2015年   4篇
  2014年   11篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1995年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
71.
采用全隐欧拉格式(FICE)对重力波波包在三维非等温大气、均匀和剪切风场中的非线性传播进行了数值模拟,给出了重力波波包三维非线性传播的全过程,分析了重力波的传播特性及背景温度场、风场对重力波传播的影响。结果表明:波包扰动速度振幅的增长比在WKB条件下振幅的增长要慢;波包非线性传播的路径、能量传输速度不同于WKB近似下的结果,非线性效应导致了重力波的传播特性的改变;温度场的非均匀性会改变重力波传播的路径和速度;剪切风场使扰动速度振幅的增加变得缓慢,使垂直波长减小。  相似文献   
72.
In recent years non-tidal Time Varying Gravity (TVG) has emerged as the most important contributor in the error budget of Precision Orbit Determination (POD) solutions for altimeter satellites’ orbits. The Gravity Recovery And Climate Experiment (GRACE) mission has provided POD analysts with static and time-varying gravity models that are very accurate over the 2002–2012 time interval, but whose linear rates cannot be safely extrapolated before and after the GRACE lifespan. One such model based on a combination of data from GRACE and Lageos from 2002–2010, is used in the dynamic POD solutions developed for the Geophysical Data Records (GDRs) of the Jason series of altimeter missions and the equivalent products from lower altitude missions such as Envisat, Cryosat-2, and HY-2A. In order to accommodate long-term time-variable gravity variations not included in the background geopotential model, we assess the feasibility of using DORIS data to observe local mass variations using point mascons. In particular, we show that the point-mascon approach can stabilize the geographically correlated orbit errors which are of fundamental interest for the analysis of regional Mean Sea Level trends based on altimeter data, and can therefore provide an interim solution in the event of GRACE data loss. The time series of point-mass solutions for Greenland and Antarctica show good agreement with independent series derived from GRACE data, indicating a mass loss at rate of 210 Gt/year and 110 Gt/year respectively.  相似文献   
73.
目前国内导弹大部分是以惯性制导为主,一般通过提高惯性器件水平来提高导航精度.而减少引力计算误差,也是提高精度的有效途径.本文定量计算了引力计算误差对导弹精度的影响,提出了一种适用于弹上实时计算的引力高精度快速计算方法及实施流程,为工程应用奠定了基础.  相似文献   
74.
Temporal and mean gravity field models derived from the twin-satellite, leader–follower mission GRACE have provided a new type of information for Earth sciences. In this contribution, we study the potential of various alternative satellite formations for gravity field determination in the post-GRACE era in a simulation environment. In particular, the effects of spherical harmonic truncation and of temporal aliasing in the processing of gravity products from such future formations are investigated.  相似文献   
75.
In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the “complete” temperature profile and to its “separate” tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.  相似文献   
76.
The state-of-the-art electrostatic accelerometers (EA) used for the retrieval of non-gravitational forces acting on a satellite constitute a core component of every dedicated gravity field mission. However, due to their difficult-to-control thermal drift in the low observation frequencies, they are also one of the most limiting factors of the achievable performance of gravity recovery. Recently, a hybrid accelerometer consisting of a regular EA and a novel cold atom interferometer (CAI) that features a time-invariant observation stability and constantly recalibrates the EA has been developed in order to remedy this major drawback. In this paper we aim to assess the value of the hybrid accelerometer for gravity field retrieval in the context of GRACE-type and Bender-type missions by means of numerical closed-loop simulations where possible noise specifications of the novel instrument are considered and different components of the Earth’s gravity field signal are added subsequently. It is shown that the quality of the gravity field solutions is mainly dependent on the CAI’s measurement accuracy. While a low CAI performance (10?8 to 10?9?m/s2/Hz1/2) does not lead to any gains compared to a stand-alone EA, a sufficiently high one (10?11?m/s2/Hz1/2) may improve the retrieval performance by over one order of magnitude. We also show that improvements which are limited to low-frequency observations may even propagate into high spherical harmonic degrees. Further, the accelerometer performance seems to play a less prominent role if the overall observation geometry is improved as it is the case for a Bender-type mission. The impact of the accelerometer measurements diminishes further when temporal variations of the gravity field are introduced, pointing out the need for proper de-aliasing techniques. An additional study reveals that the hybrid accelerometer is – contrary to a stand-alone EA – widely unaffected by scale factor instabilities.  相似文献   
77.
The application of the Global Positioning System (GPS) radio occultation (RO) method to the atmosphere enables the determination of height profiles of temperature, among other variables. From these measurements, gravity wave activity is usually quantified by calculating the potential energy through the integration of the ratio of perturbation and background temperatures between two given altitudes in each profile. The uncertainty in the estimation of wave activity depends on the systematic biases and random errors of the measured temperature, but also on additional factors like the selected vertical integration layer and the separation method between background and perturbation temperatures. In this study, the contributions of different parameters and variables to the uncertainty in the calculation of gravity wave potential energy in the lower stratosphere are investigated and quantified. In particular, a Monte Carlo method is used to evaluate the uncertainty that results from different GPS RO temperature error distributions. In addition, our analysis shows that RO data above 30 km height becomes dubious for gravity waves potential energy calculations.  相似文献   
78.
The Earth’s gravity field can be measured with high precision by constructing the purely gravitational orbit of the inner-satellite in Inner-formation Flying System (IFS), which is independently proposed by Chinese scholars and offers a new way to carry out gravity field measurement by satellite without accelerometers. In IFS, for the purpose of quickly evaluating the highest degree of recovered gravity field model and geoid error as well as analyzing the influence of system parameters on gravity field measurement, an analytical formula was established by spectral analysis method. The formula can reflect the analytical relationship between gravity field measurement performance and system parameters such as orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and total measurement time. This analytical formula was then corrected by four factors introduced from numerical simulation of IFS gravity field measurement. By comparing computation results from corrected analytical formula and the actual gravity field measurement performance by CHAMP, the correctness and rationality of this analytical formula were verified. Based on this analytical formula, the influences of system parameters on IFS gravity field measurement were analyzed. It is known that gravity field measurement performance is a monotone decreasing function of orbit altitude, the inner-satellite orbit determination error, the inner-satellite residual disturbances, data sampling interval and the reciprocal of total measurement time. There is a match relationship between the inner-satellite orbit determination error and residual disturbances, in other words, the change rate of gravity field measurement performance with one of them is seriously restricted by their relative size. The analytical formula can be used to quantitatively evaluate gravity field measurement performance fast and design IFS parameters optimally. It is noted that the analytical formula and corresponding conclusions are applied to any gravity satellite which measures gravity field by satellite perturbation orbit.  相似文献   
79.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission has been estimating temporal changes in the Earth’s gravitational field since its launch in 2002. While it is not yet fully resolved what the limiting source of error is for GRACE, studies on future missions have shown that temporal aliasing errors due to undersampling signals of interest (such as hydrological variations) and errors in atmospheric, ocean, and tide models will be a limiting source of error for missions taking advantage of improved technologies (flying drag-free with a laser interferometer). This paper explores the option of reducing the effects of temporal aliasing errors by directly estimating low degree and order gravity fields at short time intervals, ultimately resulting in data products with improved spatial resolution. Three potential architectures are considered: a single pair of polar orbiting satellites, two pairs of polar orbiting satellites, and a polar orbiting pair of satellites coupled with a lower inclined pair of satellites. Results show that improvements in spatial resolution are obtained when one estimates a low resolution gravity field every two days for the case of a single pair of satellites, and every day for the case of two polar pairs of satellites. However, the spatial resolution for these cases is still lower than that provided by simply destriping and smoothing the solutions via standard GRACE post-processing techniques. Alternately, estimating daily gravity fields for the case of a polar pair of satellites coupled with a lower inclined pair results in solutions with superior spatial resolution than that offered by simply destriping and smoothing the solutions.  相似文献   
80.
We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3–4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1–72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号