全文获取类型
收费全文 | 73篇 |
免费 | 11篇 |
国内免费 | 9篇 |
专业分类
航空 | 14篇 |
航天技术 | 32篇 |
综合类 | 1篇 |
航天 | 46篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 3篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 10篇 |
2013年 | 6篇 |
2012年 | 6篇 |
2011年 | 5篇 |
2010年 | 11篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 9篇 |
2004年 | 2篇 |
2001年 | 1篇 |
1996年 | 1篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1989年 | 1篇 |
排序方式: 共有93条查询结果,搜索用时 15 毫秒
41.
太阳帆航天器编队维持和重构的方法研究 《空间控制技术与应用》2017,43(3):7-14
针对高面质比航天器可以利用太阳光压进行轨道控制的特点,本文提出一种太阳帆航天器编队构型维持和重构的方法.该方法通过控制主从航天器太阳帆姿态角和反射系数,调整主从航天器之间的光压差,产生抵消编队成员间相对运动受到摄动差或进行轨道机动时所需的连续小推力,从而实现编队构型的维持和重构.仿真结果表明,在主航天器太阳帆的姿态角和反射系数相对固定的条件下,对于太阳同步轨道上的高面质比太阳帆航天器编队,使用滑模控制方法,能够调整编队中从航天器太阳帆的姿态角和反射系数产生推力抵消摄动力影响,达到长期维持太阳帆航天器编队构型的目的;通过开环控制方法,能够调整编队中从航天器太阳帆的姿态角和反射系数产生连续小推力,在较长时间周期内实现编队重构. 相似文献
42.
43.
本文研究条带式太阳帆在近地轨道运行进出地球阴影时的热致结构动力学响应,建立了在太阳热辐射和光压共同作用下的太阳帆结构动力学方程,采用分布传递函数法,给出了条带式太阳帆热致结构稳态振动幅频响应的计算方法。算例结果表明:热辐射冲击是引起近地轨道太阳帆结构动力学响应的主要原因,光压引起的结构响应可忽略不计;增加桅杆壁厚不能有效抑制太阳帆的热致结构动态响应;增大阻尼,减小结构的热膨胀系数能够明显减小太阳帆热致结构响应的振幅;热致结构动态响应是设计大尺寸近地轨道太阳帆必须解决的问题。本文提出的方法可为太阳帆结构设计、姿态和轨道控制提供有力的分析工具。 相似文献
44.
王伟志 《运载火箭与返回技术》2007,28(2):1-4,48
文章简要阐述了太阳帆的概念、主要结构和技术,参考美国L’Garde公司的太阳帆展开设计,对涉及的充气及刚化予以概述,为研究分析太阳帆的展开技术提供借鉴。 相似文献
45.
46.
47.
针对航天器平动点轨道保持问题,研究了含有反射率控制设备(RCD)的太阳帆航天器在日地系共线人工平动点处的轨道保持与控制,同时降低因频繁改变航天器姿态所带来的振动问题。首先,基于太阳帆圆型限制性三体问题,计算了RCD型太阳帆人工平动点位置,给出了太阳帆共线人工平动点三阶Halo轨道,并将其作为参考轨道;然后,将太阳帆动力学方程线性化,采用跟踪控制输出的方法对线性模型进行控制;最后,通过合理选择控制变量矩阵,将控制律代入非线性模型中进行轨道保持控制。仿真结果表明,通过控制RCD太阳帆反射率设备参数及姿态角,实现了长时间的Halo轨道保持,同时大幅减小了太阳帆姿态角的改变,从而减小了帆面振动,为太阳帆航天器长期轨道任务的实现提供了良好的理论依据。 相似文献
48.
49.
针对采用太阳帆、太阳电混合小推力推进的航天器,研究了其在日心悬浮轨道的保持控制问题。为解决已有控制方法中未综合考虑内部未建模动态和外部未知扰动的问题,以及进一步提高系统控制性能,设计了一种高性能滑模控制策略。首先,考虑模型不确定性,建立了混合小推力航天器在日心悬浮轨道柱面坐标系的动力学方程;其次,基于改进型条件积分滑模面和径向基(RBF)神经网络设计了控制律,结合自适应方法在线估计不确定参数;接着,将求取的虚拟控制量在推进剂最优条件下转换成实际控制量,即太阳帆姿态角和太阳电推进力;最后,数值仿真验证了上述设计方法提高了系统鲁棒性,减小了轨道位置超调,并且混合推进相比于单一太阳帆推进,在更短收敛时间内控制精度提高了4个数量级,相比于单一太阳电推进,一年可以节省约89.6%的推进剂。 相似文献
50.
输入成型法无法消除姿态机动过程中的柔性振动,残留的柔性振动将改变大柔性太阳帆航天器的结构参数,影响姿态机动的控制精度。为此,基于两种控制手段(作用于太阳帆中心的喷气和作用于支撑杆顶端的电推进)的组合,提出复合控制方法,以消除姿态机动过程中的柔性振动。采用将帆面质量等效到支撑杆的简化方法,建立太阳帆航天器姿态运动与柔性振动的耦合动力学模型,并从减小振动模态的外加激励出发,根据简化的动力学模型,得到了两种复合控制的设计方法:消除某一阶的柔性振动方法和减小前n(n>1)阶的柔性振动方法。仿真结果表明,相比输入成型法,第二种复合控制方法不但机动时间短,还能够将姿态机动过程中的柔性振动抑制到5%,使机动角度精度优于0.003°。由于仅利用已有的控制手段,复合控制方法算法简单,适合于实际应用。 相似文献