全文获取类型
收费全文 | 170篇 |
免费 | 30篇 |
国内免费 | 26篇 |
专业分类
航空 | 151篇 |
航天技术 | 16篇 |
综合类 | 33篇 |
航天 | 26篇 |
出版年
2023年 | 4篇 |
2022年 | 3篇 |
2021年 | 6篇 |
2020年 | 8篇 |
2019年 | 11篇 |
2018年 | 12篇 |
2017年 | 8篇 |
2016年 | 8篇 |
2015年 | 14篇 |
2014年 | 14篇 |
2013年 | 6篇 |
2012年 | 8篇 |
2011年 | 7篇 |
2010年 | 6篇 |
2009年 | 11篇 |
2008年 | 10篇 |
2007年 | 7篇 |
2006年 | 10篇 |
2005年 | 13篇 |
2004年 | 5篇 |
2003年 | 11篇 |
2002年 | 5篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 1篇 |
排序方式: 共有226条查询结果,搜索用时 51 毫秒
51.
52.
以具有渐变曲率Inconel718厚板弯曲件为背景,采用成形实验与数值模拟方法,分析了带压料热弯曲时,凸凹模间隙与摩擦系数对成形件尺寸精度及表面质量的影响规律。结果表明:当凸凹模间隙与摩擦条件不变时,从曲率半径小的一端至大的一端,试件弯曲段尺寸偏差逐渐增大。在实验范围内,凸凹模间隙对尺寸偏差的影响大于摩擦系数的影响。为提高成形精度提出了渐变凸凹模间隙并辅以渐变摩擦系数的方法。根据数值模拟结果可知,采用该方法可显著提高成形精度。通过热弯曲实验验证了该方法的有效性,Inconel718厚板弯曲件尺寸偏差在±0.5mm以内,表面质量良好。 相似文献
53.
一种满足结构动态特性要求的支持元件设计方法 总被引:2,自引:0,他引:2
对支持元件在结构动态特性设计中的重要性作了深入分析,提出了一种利用给定的固有频率、非完全的振型数据设计支持元件,使结构系统满足动态特性要求的支持元件设计方法。文中将支持元件的质量、刚度矩阵表示成设计变量的函数,根据要求的固有频率,已知支持情况的结构有限元模型,用简单的插值法获得了支持元件设计变量的初值;再设计过程中,为了避免振型数据不全的矛盾,采用聚缩模型的形式依据正交条件构造误差函数,用约束变尺度优化方法获得支持元件的最终设计结果。误差函数的梯度用差分法计算。最后详细给出了该方法在某型飞机机翼颤振吹风模型支持元件设计时实际应用的全过程,结果表明效果良好。 相似文献
54.
55.
57.
本文用变量分离法推导了求解矩形域平面问题的通用应力函数和用该通用应力函数表达的应力分量、应变分量以及位移分量公式。该通用应力函数可用来求解受任意载荷作用的矩形域平面问题。且所得解答不是放松边界条件的圣维南意义下的解答,而为精确级数解答。 相似文献
58.
从基本的无网格光滑粒子法SPH(Smoothed Particle Hydrodynamics)近似出发,修正了模拟固体力学中大变形弹塑性碰撞的SPH方法.在边界处采用修正的边界条件,弹塑性分析过程中采用增量理论计算应力,迭代过程中用守恒光滑法进行滤波修正消除拉力不稳定.对SPH方法进行了程序实现,给出了杆弹塑性碰撞的算例.计算分析表明,SPH方法节点的影响域较大、精度较相同节点间距有限元法的结果有一定差距,但是通过增加粒子数量可以提高SPH的精度,保持了其简单性和计算大变形的特性. 相似文献
59.
为降低跨声速压气机叶片通道中的激波损失,提升跨声速压气机的气动性能,以三维粘性反问题设计方法理论为基础,发展了三维反问题设计方法,并对反问题所使用的边界条件进行了改进。在保持叶片总切向载荷不变的同时,通过调整叶片表面沿轴向的载荷分布,达到降低叶片通道内部的激波强度,减少激波损失的目的。为验证方法的正确性,文中运用NASA Rotor 67跨声速压气机转子实验数据与计算结果进行对比,在此基础上对叶片表面载荷进行分析,在修改叶片表面载荷分布后通过反问题设计方法得到新的叶片几何。结果表明,通过修改叶片表面载荷分布,运用反问题设计方法得到的新叶片,其激波强度明显降低,压气机转子出口流量提高了0.5%,效率提高了1.0%。 相似文献
60.
齿轮瞬态温度场的仿真分析 总被引:2,自引:0,他引:2
以直齿圆柱齿轮为研究对象,基于能量守恒定律和傅立叶定律推导了齿轮瞬态温度场的导热微分方程,根据定解条件确定了齿轮各个界面边界条件,运用有限元方法和传热学理论建立直齿圆柱齿轮模型,加载边界条件,并对其瞬态温度场进行仿真,得到了不同周期的温度场分布和节点温度变化曲线,系统地分析了其温度场随时间的变化.结果表明:温度随着啮合周期的增多而增高;在啮合阶段节点温度有一急剧升高,在退出啮合后进入非啮合阶段,温度逐渐降低;啮合阶段温升大于非啮合阶段温度的下降,该节点温度总体趋势升高.分析结果符合实际,为齿轮的热分析奠定了坚实的基础. 相似文献