首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1841篇
  免费   537篇
  国内免费   181篇
航空   1786篇
航天技术   191篇
综合类   272篇
航天   310篇
  2024年   10篇
  2023年   71篇
  2022年   74篇
  2021年   83篇
  2020年   123篇
  2019年   113篇
  2018年   76篇
  2017年   82篇
  2016年   105篇
  2015年   86篇
  2014年   123篇
  2013年   108篇
  2012年   99篇
  2011年   98篇
  2010年   97篇
  2009年   88篇
  2008年   115篇
  2007年   109篇
  2006年   78篇
  2005年   61篇
  2004年   69篇
  2003年   65篇
  2002年   65篇
  2001年   49篇
  2000年   53篇
  1999年   30篇
  1998年   33篇
  1997年   47篇
  1996年   39篇
  1995年   47篇
  1994年   24篇
  1993年   41篇
  1992年   39篇
  1991年   17篇
  1990年   33篇
  1989年   33篇
  1988年   12篇
  1987年   11篇
  1986年   12篇
  1985年   12篇
  1984年   5篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
排序方式: 共有2559条查询结果,搜索用时 281 毫秒
971.
采用一种新的基于压力和剪切力的溢流水流量计算方法进行部件表面防冰热载荷数值模拟。求解雷诺平均N-S方程,嵌入k-ωSST湍流模型获得空气流场;欧拉法求解水滴质量和动量守恒方程,获得部件周围水滴速度分布和表面水滴撞击特性;基于传统的Messinger控制容积思想,分析控制体的各项热流,建立质量守恒和能量守恒方程,引入溢流水质量流量计算方程,封闭控制方程,求解方程组获得表面所需的防冰热载荷。采用本文提出的新的流量计算方法获得了NACA0012翼型表面的结冰冰形,并与试验数据进行对比,说明了流量计算方法的正确性。计算分析了不同条件下表面的防冰热载荷分布,结果表明,工作风速和液态水含量的变化既影响了防冰热载荷大小,也影响了溢流范围,而工作温度仅影响防冰热载荷,水滴平均容积直径仅影响溢流范围。  相似文献   
972.
为了研究空气喷注环缝宽度对两相旋转爆轰波压力与频率特性的影响,通过改变环缝宽度与当量比开展了大量实验研究。旋转爆轰发动机环形燃烧室外径、内径以及长度分别为204mm、166mm和155mm。汽油和高温空气采用高压雾化喷嘴与环缝对撞喷注的方式进行混合,以此提高推进剂的掺混效果与活性,发动机采用预爆轰管作为点火装置。实验通过燃烧室内测得的高频动态压力信号,对两相旋转爆轰波的传播稳定性、压力特性以及频率特性进行了详细分析。实验结果表明:在不同环缝宽度下均实现了高总温空气与汽油的两相旋转爆轰。当环缝宽度为3mm和4mm,旋转爆轰波平均峰值压力与传播频率均随着当量比增大而增大;增加环缝宽度至6mm,爆轰波传播稳定性变差,平均峰值压力与传播频率随当量比先增大后减小。当环缝宽度为4mm,获得的旋转爆轰波平均峰值压力最高,压力脉动强度最小,爆轰波传播稳定性最强。在一定工况范围内,增加当量比可有效降低爆轰波峰值压力脉动强度。此外,随着空气环缝宽度的增加,爆轰波传播频率整体降低。当环缝宽度为3mm,当量比为1.19时,爆轰波以单波模态在环形燃烧室内连续旋转传播,平均传播速度约为1176.6m/s,爆轰波传播速度存在严重亏损。  相似文献   
973.
利用热力学第二定律分析了布雷顿、逆布雷顿循环组成的联合循环,得出了联合循环各部分的(火用)损失及系统的(火用)效率表达式,确定了循环中(火用)损失最大的位置,并由数值计算分析了各种参数对联合循环(火用)效率和其他特性的影响.  相似文献   
974.
张浩  汪涛  李延希 《航空发动机》2024,50(2):170-174
为确定轻小型直升机飞行性能评估所需的发动机安装性能损失,对隐蔽式安装布局的涡轴发动机进行了不同直升机飞行姿态的飞行试验。基于试飞数据建立了一套真实飞行条件下涡轴发动机安装损失的计算流程,对比分析了在不同高度和速度下稳定平飞、有/无地效悬停、有/无地效悬停回转、不同高度爬升、不同高度下滑、盘旋、侧后飞等飞行姿态对涡轴发动机安装损失的影响。结果表明:隐蔽式安装布局的涡轴发动机安装损失主要来自进气温升,不同飞行姿态下功率损失为4.3%~20.7%,耗油率相对增量为1.2%~132.7%;功率损失随飞行高度的变化规律不明显,随飞行速度的增大而减小;耗油率相对增量随飞行高度和飞行速度的增大而减小;在近地面的低速飞行姿态下安装损失最小,且受地效影响较小;风速和风向对安装损失的影响较大。  相似文献   
975.
混平  单琳  刘军  耿直 《火箭推进》2016,(3):93-98
介绍了发动机试验水击压力测量的重要性,水击压力传感器进行现场校准方法研究的必要性.通过分析水击压力产生机理、水击压力传感器测量原理,以及对国内外动态校准系统比较分析,设计了水击压力传感器现场校准系统,提出水击压力传感器现场校准装置设计指标、工作方式,校准装置设计难点,同时介绍了现场校准系统的关键技术.并重点论述了水击压力传感器现场校准方法,对水击压力传感器现场试验数据和发动机试验数据进行了比对,分析了水击压力现场校准装置的设计可行性.最后利用校准装置进行了水击压力传感器现场校准试验,对现场校准数据进行计算分析,得到水击压力传感器灵敏度系数、系统校准曲线和上升时间等.还针对试验中水击压力测量干扰信号提出了抗干扰措施.  相似文献   
976.
目前,硅压阻式压力/压差传感器在伺服系统上得到广泛的应用。但是由于其内部压力敏感芯体的封装结构为薄膜隔离式,其内部硅油的密封性是伺服系统配套传感器长期带压贮存的软肋。根据伺服系统对压力/压差传感器的需求,研制了几种无介质压阻式压力/压差传感器,其内部避免了硅油介质传递压力,保证了传感器的可靠性。通过传感器原理结构的研究,以及其性能指标的测试和对比,为伺服系统配套传感器提供了新的选择。  相似文献   
977.
设计了一种直动式二维(Two Dimensional,2D)电液压力伺服阀,采用2D伺服活塞机构产生液压力来驱动主阀芯运动,输出需要的负载压力。设计的2D伺服活塞机构采用直线位移传感器(Linear Variable Differential Transformer,LVDT)进行检测从而形成闭环位置反馈,精确控制2D活塞位移;主阀芯与2D伺服活塞通过弹簧连接,2D活塞在两侧压力差作用下运动,通过弹簧来对主阀芯施加作用,控制主阀阀口的开度,来精确控制输出的负载压力;为提高压力伺服阀的稳定性和可靠性,主阀阀芯根据挤压油膜缓冲理论进行了圆盘结构设计,以增大系统黏性阻尼。在建立该阀的数学模型的基础上,仿真分析了该阀的静动态特性,并通过设计样阀及实验研究,验证了该阀设计的可行性,实验结果表明:在系统压力28 MPa下,该阀的阶跃响应时间在30ms,其滞环3%,线性度2%,压力跟随特性和输出稳定性好;相较于传统直动式比例伺服压力阀,该阀的结构特点决定了其抗污染能力强,可靠性高,且质量和体积分别仅为同类伺服阀的1/5和1/7左右,非常适用于机载液压刹车系统。  相似文献   
978.
设计并搭建了一套微小通道沿程压力的测量系统,包括PMMA通道和压力方腔、微应变传感器及多通道应变仪等。利用注射泵的推进方法提供微通道静压,采用FCO510型高精度微差压计的测量值作为标准压力,通过多通道应变仪测量微通道方腔中各个应变片的应变值,从而建立标准压力和应变之间的标定函数。分别对3种微压芯片在80、70、60及50mL/min等4种不同流量下的压力分布进行了测量,压力分布具有良好的线性规律。不确定度分析表明压力误差的相对扩展不确定度范围为0.15%~6.82%,测量结果的有效性和可靠性较高。  相似文献   
979.
针对一起罕见的直八型直升机滑油泵故障,通过理论分析和合理推测,找到了故障根源并进行了排除,提出了相应的改进意见,以避免此类故障的再次发生.  相似文献   
980.
那振喆  刘波  史磊  茅晓晨 《推进技术》2017,38(4):845-852
为进一步提升非轴对称端壁造型技术在改善高压涡轮导向器叶栅通道内流场结构的能力,借助数值优化手段对一高压涡轮导向器上、下端壁进行了基于Bezier曲线的非轴对称端壁曲面造型优化,为揭示非轴对称端壁在改善高压涡轮导向器流场方面的流动机理,借助三维空间流线对比分析了优化前后导向器通道内端区的流场结构。优化结果表明:非轴对称端壁有效地降低了导向器出口的流动损失,总压损失降低了9.93%,而出口流量最大增幅不到0.13%,同时,出口气流角分布也更加均匀;流场分析表明:高压涡轮导向器中的通道涡主要是由端壁附面层内的低能流体组成,其强度主要是由端壁附面层横向迁移强度及马蹄涡压力面分支强度所决定;优化后得到的非轴对称端壁通过改变端区局部静压场分布,实现了对端壁附面层迁移的控制,从而达到改善端区流场结构、降低流动损失的目的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号