首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
航空   11篇
航天技术   12篇
  2020年   2篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
We have analyzed 101 Coronal Mass Ejection (CME) events and their associated interplanetary CMEs (ICMEs) and interplanetary (IP) shocks observed during the period 1997–2005 from the list given by Mujiber Rahman et al. (2012). The aim of the present work is to correlate the interplanetary parameters such as, the speeds of IP shocks and ICMEs, CME transit time and their relation with CME parameters near the Sun. Mainly, a group of 10 faster CME events (VINT > 2200 km/s) are compared with a list of 91 normal events of Manoharan et al. (2004). From the distribution diagrams of CME, ICME and IP shock speeds, we note that a large number of events tends to narrow towards the ambient (i.e., background) solar wind speed (∼500 km/s) in agreement with the literature. Also, we found that the IP shock speed and the average ICME speed measured at 1 AU are well correlated. In addition, the IP shock speed is found to be slightly higher than the ICME speed. While the normal events show CME travel time in the range of ∼40–80 h with a mean value of 65 h, the faster events have lower transit time with a mean value of 40 h. The effect of solar wind drag is studied using the correlation of CME acceleration with interplanetary (IP) acceleration and with other parameters of ICMEs. While the mean acceleration values of normal and faster CMEs in the LASCO FOV are 1 m/s2, 18 m/s2, they are −1.5 m/s2 and −14 m/s2 in the interplanetary medium, respectively. The relation between CME speed and IP acceleration for normal and faster events are found to agree with that of  and  except slight deviations for the faster events. It is also seen that the faster events with less travel time face higher negative acceleration (>−10 m/s2) in the interplanetary medium up to 1 AU.  相似文献   
22.
In this paper I will briefly summarize the present status of our knowledge on the four different sorts of solar wind, their sources and their short- and long-term variations. First: the fast solar wind in high-speed streams that emerges from coronal hole regions. Second: the slow solar wind emerging from the non-active Sun near the global heliospheric current sheet above helmet streamers and underlying active regions. Third: the slow solar wind filling most of the heliosphere during high solar activity, emerging above active regions in a highly turbulent state, and fourth: the plasma expelled from the Sun during coronal mass ejections. The coronal sources of these different flows vary dramatically with the solar activity cycle.  相似文献   
23.
We present here a brief summary of the rich heritage of observational and theoretical research leading to the development of our current understanding of the initiation, structure, and evolution of Coronal Mass Ejections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号