首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5170篇
  免费   919篇
  国内免费   885篇
航空   3772篇
航天技术   1534篇
综合类   629篇
航天   1039篇
  2024年   30篇
  2023年   110篇
  2022年   160篇
  2021年   272篇
  2020年   297篇
  2019年   408篇
  2018年   554篇
  2017年   414篇
  2016年   384篇
  2015年   348篇
  2014年   238篇
  2013年   251篇
  2012年   381篇
  2011年   412篇
  2010年   259篇
  2009年   257篇
  2008年   324篇
  2007年   289篇
  2006年   323篇
  2005年   230篇
  2004年   175篇
  2003年   124篇
  2002年   86篇
  2001年   104篇
  2000年   71篇
  1999年   52篇
  1998年   74篇
  1997年   60篇
  1996年   57篇
  1995年   57篇
  1994年   72篇
  1993年   29篇
  1992年   21篇
  1991年   11篇
  1990年   13篇
  1989年   14篇
  1988年   9篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有6974条查询结果,搜索用时 15 毫秒
991.
郭峰  朱剑锋  尤延铖  邢菲 《航空学报》2021,42(7):124755-124755
基于高斯伪谱航迹优化方法,建立了"火箭辅助型涡轮基组合动力"的飞行器/推进系统匹配分析方法,针对地面水平起降、以马赫数5巡航的高超声速飞行器,以巡航航程最远为目标,完成了涡轮基组合动力(TBCC)与火箭的耦合特性分析及匹配优化设计。研究结果表明:对于可行的TBCC方案(起飞推重比为1.0),引入合适推力的火箭有助于提升加速爬升段的总效率并降低质量消耗,且对巡航航程有着一定的提升(4%起飞重量推力火箭可增加航程0.97%);对于不可行的TBCC方案(起飞推重比为0.8),引入火箭不仅可实现推进系统方案的收敛,且其巡航航程相比可行的TBCC方案最多可增加7.9%。考虑到TBCC较大的"死重"和较低的单位迎面推力对巡航性能的不利影响,结构质量占比为25%的巡航型飞行器建议采用"13%起飞重量推力火箭辅助起飞推重比为0.7的TBCC "推进系统。相比之下,结构质量占比为55%的加速型飞行器建议采用" 5%起飞重量推力火箭辅助起飞推重比为0.98的TBCC"推进系统。  相似文献   
992.
赵冬冬  赵国胜  夏磊  方淳  马睿  皇甫宜耿 《航空学报》2021,42(7):324659-324659
燃料电池因其高效、无污染、噪声小等特点,被认为是未来最具有潜力的无人机(UAV)用动力源,燃料电池阴极供气系统的控制技术是决定燃料电池系统性能和可靠性的关键。针对无人机用质子交换膜燃料电池(PEMFC)阴极供气系统,首先,考虑外界温度、压力、空气密度以及雷诺数等随高度变化的参数,建立了跨高度离心空压机模型并分析了其在不同高度下的工作特性,基于无刷直流电机反电势特征构建了高速空压机驱动电机模型。其次,通过计算燃料电池阴极氧气和氮气的动态分压获取了PEMFC电堆输出电压。设计了基于分数阶PIλDμ的过氧比和阴极气压控制方法,驱动电机采用有限集模型预测控制(MPC)实现快速的转矩响应,仿真结果表明设计的控制器可在无人机跨高度运行条件下实现过氧比的快速调节,同时维持阴极气压稳定,满足燃料电池阴极供气需求。  相似文献   
993.
智能赋能流体力学展望   总被引:1,自引:0,他引:1  
张伟伟  寇家庆  刘溢浪 《航空学报》2021,42(4):524689-524689
人工智能(AI)是21世纪的前沿科技,流体力学如何在智能化时代焕发青春是值得本领域研究者思考的话题。从智能赋能流体力学角度,就其研究内涵、研究内容、近期研究及难点进行了总结,并对智能流体力学未来的发展进行了展望。研究指出,流体力学计算或试验中所产生的数据是天生的大数据,如何通过深度神经网络、随机森林、强化学习等机器学习方法来利用这些数据,缓解甚至替代理论和方法层面对人脑的依赖,挖掘新的知识,成为一种新的研究范式;相关研究将涵盖流动控制方程的机器学习、湍流模型的机器学习、物理量纲分析与标度的智能化以及数值模拟方法的智能化;借助人工智能技术,发展流动信息特征提取与多源数据融合的智能化是流体力学发展的迫切需求;研究内容应至少涵盖海量数据挖掘方法以及多源气动数据的智能融合;发展数据驱动的流体力学多学科、多物理场耦合建模与控制是工程应用的迫切需求,相关工作涉及多场耦合建模、气动外形智能优化设计以及流动智能自适应控制等方面。  相似文献   
994.
王恺  郭霖瀚  高渤程  王乃超 《航空学报》2013,34(7):1646-1653
由于装备复杂程度的提高以及维修过程的不确定性,对复杂可修系统修复性维修(CM)过程的分析一般基于概念模型进行仿真.通过建立随机的维修功能框图(MFBD),考虑装备测试性设计对维修过程的影响,建立了支持多级多层(MIME)维修活动的仿真模型,同时该模型也支持维修活动间复杂层次及逻辑关系的描述.给出了考虑资源等待时间的复杂可修系统的平均修复时间仿真计算方法,建立了复杂可修系统的修复性维修过程仿真应用案例.通过对测试性设计参数等不同影响因素的调整进行敏感性分析,验证了模型的正确性和适用性.  相似文献   
995.
基于WCFSE-FSVM的转子振动故障诊断方法   总被引:3,自引:3,他引:0       下载免费PDF全文
费成巍  白广忱 《推进技术》2013,34(9):1266-1271
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSE-FSVM方法的可行性和有效性。   相似文献   
996.
针对亚轨道飞行器单台发动机发生故障情况,提出了基于正指数攻角的发动机故障下飞行程序设计方法,给出了不同故障时刻的仿真结果,并与正常飞行情况进行了比较.仿真结果表明,对于不同故障时刻,该方法均能够在满足弯矩约束、攻角限制的情况下使得故障飞行器安全到达预定高度,为后续应急返回机动飞行提供有利的飞行条件.  相似文献   
997.
本文介绍了一种可靠的MDIO 接口逻辑设计的方法。目前已使用在AFDX交换机专用集成电路芯片上。该设计采用VHDL 进行描述,并使用Modelsim进行了仿真,结果表明,该设计的正确性和可靠性。同时在AFDX交换机板级调试过程中,也验证了设计的正确性。  相似文献   
998.
研究了C24S-T8铝锂合金搅拌摩擦焊接头力学性能及微观组织。通过焊接工艺参数的优化,获得了无孔洞缺陷、焊缝质量优异的接头,强度系数约82%。拉伸时塑性变形及断裂集中于焊缝处。基材晶粒呈薄饼状,沿轧制方向拉长;焊核区为细小等轴的再结晶晶粒,平均晶粒尺寸约2.3μm,大部分晶界是大于15°的大角度晶界;热机影响区的晶粒在焊接过程中发生了偏转和变形。C24S-T8铝锂合金基材强化相包括T1相(Al2CuLi)、θ’相(Al2Cu)和S’相(Al2CuMg);热机影响区及焊核区内强化相完全溶解,造成硬度下降。  相似文献   
999.
采用光学显微镜、扫描电子显微镜以及Thermal-calc 计算等方法分析了马氏体时效钢(C300) 穿
孔型等离子弧焊接(Keyhole-Plasma Arc Welding, K-PAW)过程中结晶裂纹的成因及形貌。研究认为,C300 虽
然具有良好的焊接性,但也会产生结晶裂纹。本试验条件下,影响高纯净C300 产生结晶裂纹的主要因素是应
变—温度增长速率,提高预热温度和增加线能量有利于降低结晶裂纹倾向。焊接热源对母材的预热作用有利
于已形成结晶裂纹的逐步止裂。具有凸形表面的焊缝以及细小等轴晶的焊缝的结晶裂纹倾向较小。  相似文献   
1000.
一种改进的紧致WENO混合格式   总被引:1,自引:0,他引:1  
给出了一种用于激波捕捉计算的守恒型混合紧致WENO格式.混合格式可视为五阶WENO格式和五阶守恒紧致格式的加权平均.在格式构造中,本文采用了间断分辨率更好的WENO权因子计算方法以及新的子格式权因子计算方法.对于Euler方程,仅对混合格式中WENO格式部分做特征投影处理,不仅获得了特征型WENO格式良好的间断分辨率,同时又保证了计算效率.数值实验验证了本文混合格式的高时间效率和高流场分辨率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号