首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   138篇
  国内免费   36篇
航空   308篇
航天技术   36篇
综合类   14篇
航天   113篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   16篇
  2019年   17篇
  2018年   12篇
  2017年   12篇
  2016年   16篇
  2015年   11篇
  2014年   16篇
  2013年   25篇
  2012年   27篇
  2011年   31篇
  2010年   23篇
  2009年   16篇
  2008年   27篇
  2007年   31篇
  2006年   17篇
  2005年   16篇
  2004年   10篇
  2003年   18篇
  2002年   13篇
  2001年   3篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   10篇
  1991年   1篇
  1990年   8篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
排序方式: 共有471条查询结果,搜索用时 281 毫秒
41.
微涡喷发动机是低成本的结构简单的燃气涡轮动力装置,特别适合于推动巡航导弹、(雷达)假目标、轻型直升机、无人侦察机和航空靶机。离心甩油盘环形折流燃烧室由于具有燃油雾化质量好,轴向长度短,高空性能好等优点,很适合作为微涡喷发动机动力装置的燃烧室。本文主要研究了离心甩油盘环形折流燃烧室的气动热力学参数和几何参数的设计,并通过实验研究验证参数设计的合理性。   相似文献   
42.
根据我国火星着陆巡视器工作过程,其着陆发动机需要在相对火星大气高速迎风运动中可靠点火。由于巡视器着陆时发动机喷管出口气流与火星稀薄气流方向相反,目前无法通过理论计算准确获得着陆过程的动态流场对发动机起动过程的影响量值。为验证火星着陆环境下发动机点火的适应性,需要建立发动机的火星大气来流试验环境模拟条件。为模拟发动机在火星大气条件下的相对运动,在真空舱内发动机保持固定,前端设置环形来流形成装置,该装置在发动机喷管周围形成一定速度的逆向来流包络。采用数值模拟技术结合试验验证方法,在火星着陆器巡视器主发动机性能考核试验中,针对来流的形成装置开展了设计研究工作。来流模拟试验测试数据表明:在确保贮箱供应压力稳定的条件下,来流模拟系统能够形成100~200 m/s速度的稳定来流,发动机在来流下能稳定启动工作,真空舱压力满足试验要求。  相似文献   
43.
离子电推进技术的发展现状与未来   总被引:1,自引:0,他引:1       下载免费PDF全文
离子电推进是最具代表性和技术成熟度的电推进技术类型之一。本文从放电室技术、离子光学系统技术、放电阴极和中和器阴极技术的优势、缺憾等方面,总结了离子电推进的技术发展现状。针对未来航天任务对离子电推进更大功率、更高比冲、更简系统等新需求,分析了传统离子电推进所面临的主要技术挑战,梳理出了环型离子电推进、双级加速离子电推进、自中和离子电推进、螺旋波放电离子电推进等创新离子电推进技术发展的未来方向。  相似文献   
44.
基于高温热管的超燃燃烧室热防护结构   总被引:2,自引:1,他引:1  
提出了基于先进热管理思想的燃烧室热防护结构.面板采用腔体式平板高温热管,实现面板等温化,降低局部高温区的温度;在热管腔体内部设计燃油冷却通道,实现对超燃燃烧室面板的燃油主动冷却.对其各项性能进行了数值分析,给出了设计参数对系统性能的影响规律,并完成了结构样件研制及石英灯试验考核.典型设计状态下,其单位面积质量为无氧铜面板的35.4%,高温合金面板的38.2%.石英灯局部加热条件下,面板最高温度为1123K时最大温差为80K.相比于传统燃油冷却方式,该型防热结构能够有效提高超燃发动机燃烧室热防护的整体性能,是超燃发动机热防护的一种重要概念.   相似文献   
45.
To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles, jet momentum and offcenter ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.  相似文献   
46.
气喷嘴和声腔对燃烧室声学特性的影响   总被引:2,自引:0,他引:2  
为了掌握气喷嘴和声腔对燃烧室声学特性的影响规律以及解释声学实验中出现的切向频率分化现象的内在机理,采用声学有限元方法(FEM)并在单喷嘴声学模拟实验验证的基础上,从固有频率和声压分布角度分析了气喷嘴长度、声腔长度和节流嘴直径对燃烧室声学特性的影响规律,利用声压分布成功地解释了实验中出现的频率分化现象。结果表明:当燃烧室某阶切向振型频率与喷嘴1阶纵向振型频率相等时,喷嘴由于共振将切向振型声压幅值极值点附近的能量转移到喷嘴中,改变了燃烧室原切向振型的声压分布,因此在声学实验中产生切向频率分化现象;气喷嘴长度与节流嘴直径之间存在着耦合关系,在液氧煤油补燃发动机喷嘴设计阶段可进行组合参数匹配优化。   相似文献   
47.
由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究   总被引:2,自引:2,他引:2  
为了研究在压力振荡由液体火箭发动机燃烧室传递到供应系统的过程中喷嘴所起的作用,从理论上分析了压力振荡由燃烧室到供应系统通过喷嘴的传递过程,推导了振荡传递过程的传递函数.讨论带有各种喷嘴的供应系统的动态特性,对供应系统管路长度、燃烧室压强、喷嘴种类、喷嘴压降及喷嘴结构尺寸对燃烧室压力振荡引起供应系统压力振荡的影响进行了计算,得到了喷嘴以及工况参数在传递过程中的影响规律.   相似文献   
48.
本文建立了冲压发动机燃烧室气膜冷却传热分析程序。根据燃烧室设计的技术要求,从冷却性能角度完成气膜冷却系统的气动性能和传热特性分析,提供冷却结构优化所需的信息。  相似文献   
49.
脉冲爆震燃烧室管壁冲击冷却效果的数值研究   总被引:2,自引:2,他引:2  
根据实验测量的脉冲爆震燃烧室壁温沿程分布,推算出符合脉冲爆震燃烧室特定频率下的准稳态热流阶梯分布;在此基础上,针对叉排阵列射流冲击冷却的脉冲爆震燃烧室壁面温度分布进行了数值计算.研究表明,由于冷却气流通道端壁效应的影响,靠近爆震燃烧室尾部的射流孔的冲击射流速度较大,热流最大的燃烧室尾部管壁的温度可以得到有效的降低,而燃烧室中部的射流由于受到前排射流形成的横流影响,对管壁的冲击冷却效果较弱,使得壁面温度的峰值向中部转移.在相同的环形冷却通道进口雷诺数下,阵列射流孔宜布置在脉冲爆震燃烧室中部,射流冲击间距比Zn/d=1.5时,管壁的峰值温度最低而且整体的平均温度最小,较小的冲击孔直径对应的冲击冷却效果较好.   相似文献   
50.
The lubrication design and heat transfer determination of bearing chambers in aeroengine require a sufficient understanding of the oil droplet-film interaction and physical characteristic in an oil/air two-phase flow state.The analyses of oil droplet movement,mass and momentum transfer during the impingement of droplet/wall,as well as wall oil film thickness and flow velocity are very important for the bearing chamber lubrication and heat transfer calculation.An integrated model in combination with droplet movement,droplet/wall impact and film flow analysis is put forward initially based on the consideration of droplet size distribution.The model makes a contribution to provide more practical and feasible technical approach,which is not only for the study of droplet-film interaction and physical behavior in bearing chambers with oil/air two-phase flow phenomena,but also useful for an insight into the essence of physical course through droplet movement and deposition,film formation and flow.The influences of chamber geometries and operating conditions on droplet deposition mass and momentum transfer,and wall film thickness and velocity distribution are discussed.The feasibility of the method by theoretical analysis is also verified by the existing experimental data.The current work is conducive to expose the physical behavior of wall oil film configuration and flow in bearing chamber,and also significant for bearing chamber lubrication and heat transfer study under oil/air two-phase flow conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号