首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   135篇
  国内免费   216篇
航空   486篇
航天技术   363篇
综合类   81篇
航天   298篇
  2023年   18篇
  2022年   20篇
  2021年   38篇
  2020年   27篇
  2019年   37篇
  2018年   32篇
  2017年   43篇
  2016年   46篇
  2015年   47篇
  2014年   69篇
  2013年   65篇
  2012年   80篇
  2011年   71篇
  2010年   75篇
  2009年   92篇
  2008年   73篇
  2007年   60篇
  2006年   47篇
  2005年   47篇
  2004年   18篇
  2003年   32篇
  2002年   27篇
  2001年   24篇
  2000年   15篇
  1999年   13篇
  1998年   9篇
  1997年   7篇
  1996年   17篇
  1995年   15篇
  1994年   15篇
  1993年   14篇
  1992年   15篇
  1991年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   7篇
排序方式: 共有1228条查询结果,搜索用时 31 毫秒
71.
介绍电磁辐射敏感度自动测试系统组成、工作原理和设计方法,叙述了硬件配置、系统控制、数据采集处理等软件设计。其中较详细地介绍了光纤式场强数据采集部分的设计。  相似文献   
72.
Ultraviolet emission line profiles have been measured on 15-29 September 1997 for H I 1216 Å, O VI 1032, 1037 Å and Mg X 625 Å in a polar coronal hole, at heliographic heights ? (in solar radii) between 1.34 and 2.0. Observations of H I 1216 Å and the O VI doublet from January 1997 for ? = 1.5 to 3.0 are provided for comparison. Mg X 625 Å is observed to have a narrow component at ? = 1.34 which accounts for only a small fraction of the observed spectral radiance, and a broad component that exists at all observed heights. The widths of O VI broad components are only slightly larger than those for H I at ? = 1.34, but are significantly larger at ? = 1.5 and much larger for ? > 1.75. In contrast, the Mg X values are less than those of H I up to 1.75 and then increase rapidly up to at least ? = 2.0, but never reach the values of O VI.  相似文献   
73.
Using empirical velocity distributions derived from UVCS and SUMER ultraviolet spectroscopy, we construct theoretical models of anisotropic ion temperatures in the polar solar corona. The primary energy deposition mechanism we investigate is the dissipation of high frequency (10-10000 Hz) ion-cyclotron resonant Alfvén waves which can heat and accelerate ions differently depending on their charge and mass. We find that it is possible to explain the observed high perpendicular temperatures and strong anisotropies with relatively small amplitudes for the resonant waves. There is suggestive evidence for steepening of the Alfvén wave spectrum between the coronal base and the largest heights observed spectroscopically. Because the ion-cyclotron wave dissipation is rapid, even for minor ions like O5+, the observed extended heating seems to demand a constantly replenished population of waves over several solar radii. This indicates that the waves are generated gradually throughout the wind rather than propagated up from the base of the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
74.
The main point of the paper is to use the simultaneous measurements of the energetic particle flux by TriTel and those of electron density by a Langmuir probe to study the question of to what extent solar electromagnetic and corpuscular radiation (galactic cosmic rays, particle precipitation from the radiation belts) are responsible for the ionization of the atmosphere. The electron density measured by the Langmuir probe is the sum of the ionization produced by the solar electromagnetic radiation and that due to the corpuscular radiation. The ionization produced by the solar electromagnetic radiation may be computed. The flux of energetic particles in an energy range may be determined by taking the difference between the threshold energy of the TriTel telescopes and the energy corresponding to the local cut-off rigidity. As the ESEO satellite will have a quasi-polar and circular orbit, the cut-off rigidity will change from low to high latitudes, thus enabling the assignment of different energy bands for the telescopes. Thus, it will be possible to determine which energy bands of particle produce ionization at different latitudes.  相似文献   
75.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   
76.
The paper presents observation of relativistic electrons. Data are collected by the Radiation Risk Radiometer-Dosimeters (R3D) B2/B3 modifications during the flights of Foton M2/M3 satellites in 2005 and 2007 as well as by the R3DE instrument at the European Technology Exposure Facility (EuTEF) on the Columbus External Payload Adaptor at the International Space Station (ISS) in the period February 20 – April 28, 2008. On the Foton M2/M3 satellites relativistic electrons are observed more frequently than on the ISS because of higher (62.8°) inclination of the orbit. At both Foton satellites the usual duration of the observations are a few minutes long. On the ISS the duration usually is about 1 min or less. The places of observations of high doses due to relativistic electrons are distributed mainly at latitudes above 50° geographic latitude in both hemispheres on Foton M2/M3 satellites. A very high maximum is found in the southern hemisphere at longitudinal range 0°–60°E. At the ISS the maximums are observed between 45° and 52° geographic latitude in both hemispheres mainly at longitudes equatorward from the magnetic poles. The measured absolute maximums of dose rates generated by relativistic electrons are found to be as follows: 304 μGy h−1 behind 1.75 g cm−2 shielding at Foton M2, 2314 μGy h−1 behind 0.71 g cm−2 shielding at Foton M3 and 19,195 μGy h−1 (Flux is 8363 cm−2 s−1) behind les than 0.4 g cm−2 shielding at ISS.  相似文献   
77.
对发动机喷管高温部件之一的截锥3~5μm波段上红外抑制特征进行了数值研究.在红外辐射信号较强的截锥前端布置气膜缝槽冷却结构和气膜孔冷却结构,将温度较低的外涵气流通过支板引入截锥,有效降低了截锥、支板的壁面温度和红外辐射强度.对两种冷却结构进行比较,结果表明,采用向下气膜缝槽冷却结构能够达到较好的红外抑制效果,但推力损失较大;采用气膜孔冷却结构,喷管红外抑制效果略有减弱,但推力损失较小.  相似文献   
78.
A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26–34 nm (EUV26–34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.  相似文献   
79.
To evaluate the effects of ionizing radiation (IR) on murine preosteoblastic cell differentiation, we directed OCT-1 cells to the osteoblastic lineage by treatment with a combination of β-glycerophosphate (β-GP), ascorbic acid (AA), and dexamethasone (Dex). In vitro mineralization was evaluated based on histochemical staining and quantification of the hydroxyapatite content of the extracellular bone matrix. Expression of mRNA encoding Runx2, transforming growth factor β1 (TGF-β1), osteocalcin (OCN), and p21CDKN1A was analyzed. Exposure to IR reduced the growth rate and diminished cell survival of OCT-1 cells under standard conditions. Notably, calcium content analysis revealed that deposition of mineralized matrix increased significantly under osteogenic conditions after X-ray exposure in a time-dependent manner. In this study, higher radiation doses exert significant overall effects on TGF-β1, OCN, and p21CDKN1A gene expression, suggesting that gene expression following X-ray treatment is affected in a dose-dependent manner. Additionally, we verified that Runx2 was suppressed within 24 h after irradiation at 2 and 4 Gy. Although further studies are required to verify the molecular mechanism, our observations strongly suggest that treatment with IR markedly alters the differentiation and mineralization process of preosteoblastic cells.  相似文献   
80.
The Earth’s albedo is one of the least studied fundamental climate parameters. The albedo is a bi-directional variable, and there is a high degree of anisotropy in the light reflected from a given terrestrial surface. However, simultaneously observing from all points on Earth at all reflecting angles is a practical impossibility. Therefore, all measurements from which albedo can be inferred require assumptions and/or modeling to derive a good estimate. Nowadays, albedo measurements are taken regularly either from low Earth orbit satellite platforms or from ground-based measurements of the earthshine from the dark side of the Moon. But the results from these different measurements are not in satisfactory agreement. Clearly, the availability of different albedo databases and their inter-comparisons can help to constrain the assumptions necessary to reduce the uncertainty of the albedo estimates. In recent years, there has been a renewed interest in the development of robotic and manned exploration missions to the Moon. Returning to the Moon will enable diverse exploration and scientific opportunities. Here we discuss the possibility of a lunar-based Earth radiation budget monitoring experiment, the Lunar Terrestrial Observatory, and evaluate its scientific and practical advantages compared to the other, more standard, observing platforms. We conclude that a lunar-based terrestrial observatory can enable advances in Earth sciences, complementary to the present efforts, and to our understanding of the Earth’s climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号