首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1587篇
  免费   380篇
  国内免费   468篇
航空   1488篇
航天技术   337篇
综合类   206篇
航天   404篇
  2024年   5篇
  2023年   34篇
  2022年   75篇
  2021年   113篇
  2020年   81篇
  2019年   121篇
  2018年   128篇
  2017年   115篇
  2016年   141篇
  2015年   101篇
  2014年   128篇
  2013年   111篇
  2012年   150篇
  2011年   157篇
  2010年   115篇
  2009年   94篇
  2008年   108篇
  2007年   94篇
  2006年   74篇
  2005年   73篇
  2004年   42篇
  2003年   44篇
  2002年   44篇
  2001年   36篇
  2000年   38篇
  1999年   27篇
  1998年   21篇
  1997年   27篇
  1996年   16篇
  1995年   20篇
  1994年   15篇
  1993年   21篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   6篇
排序方式: 共有2435条查询结果,搜索用时 125 毫秒
81.
基于磨粒分析方法的发动机磨损故障智能诊断技术   总被引:5,自引:1,他引:5  
磨粒是研究磨损状态时最直接、最重要的信息元,通过对滑油中的磨粒进行监测与分析来判断机械设备的磨损情况,可以预防并监测机械设备的磨损故障。本文运用显微形态学方法建立了一套磨粒显微特征描述体系,以提取磨粒信息并进行磨损故障的模式识别;并结合摩擦学理论和人工智能方法,实现对发动机磨损故障的智能诊断和预测。  相似文献   
82.
一类变结构控制系统滑动模态的特征值条件   总被引:1,自引:0,他引:1  
在单输入双线性常值变结构控制和比例变结构控制及一般双线性常值变结构控制系统的基础上,将系统推广到一般多输入双线性系统的比例变结构控制,引入排序截尾算子取变结构控制律与状态变量中m个绝对值较大的分量成比例实现对n个被控变量的控制,采用李亚普诺夫方法研究这类系统的滑动模态,得出此类系统产生稳定滑模运动的条件,并对该条件进行讨论和简化,将其表述成系统矩阵与双线性矩阵特征值之间的关系式。同时给出了一个三阶  相似文献   
83.
火箭级间段连接螺栓失效数值模拟   总被引:1,自引:0,他引:1  
火箭级间段采用多个螺栓盘式连接,在高速飞行过程中,箭体受横向异常载荷的作用,导致连接螺栓相继失效.本文利用非线性有限元软件ABAQUS,对单个螺栓的失效进行数值模拟(包括无螺纹单螺栓应力模型和有螺纹单螺栓破坏模型),计算得到的失效破坏载荷与试验测定的破坏载荷进行对比.考虑火箭全箭飞行过程中遭受的横向异常载荷,对级间段连接螺栓的相继失效进行数值模拟.  相似文献   
84.
提出了一种按组成系统的各单元任务失效率比例,并考虑各单元的重要度来分配系统可靠性参数指标的新方法;给出了分别以失效率、平均故障间隔时间表达的分配比例因子及分配公式。该方法是AGREE分配法的改进。文末举例说明该方法的应用及其分配结果的合理性  相似文献   
85.
本文指出现有亚暴的中性线模型其源区在赤疲乏面上离地球太远;以GEOS-2的观测资料为依据,提出了亚暴膨胀相的一个近地触发模型-气球模不稳定性模型,该模型认为,在增长相期间到达R≈(6-10)RE的近地等离子体片内边缘区,出现指向地球方向的离子压强梯度,越尾电流强度增大,磁力线向磁尾拉伸。当等离子体片变薄,电子沉降增强,极光带电离层电导率骤增时,气球模不稳定性在近地等离子体片内边缘区被激发,场向电流  相似文献   
86.
采用预埋缺陷的方法,制备含有面芯脱焊缺陷的高温合金蜂窝板,进行了三点弯曲试验,研究了缺陷形状、大小、位置和蜂窝芯取向对蜂窝板三点弯曲损伤模式和承载能力的影响.研究发现,含面芯脱焊缺陷的蜂窝板在缺陷受压部位产生反向鼓包,并沿着宽度方向扩展为完全破坏;随着缺陷尺寸的增大,蜂窝板承载能力逐渐降低;当缺陷位于三点弯曲受拉面时,蜂窝板具有更高的三点弯曲极限载荷,且矩形缺陷试样的弯曲极限载荷要高于相同缺陷面积的圆形试样.最后,利用LS-DYNA对含圆形缺陷高温合金蜂窝板的三点弯曲性能进行了数值模拟分析,得到其三点弯曲过程中的应力分布状态.  相似文献   
87.
通过对TiAl合金进行总应变范围控制的高温(750℃)低循环疲劳实验,研究双态(Duplex,DP)和全片层(Fully Lamellar,FL)组织形态对TiAl合金低循环疲劳性能和寿命的影响,并采用总应变幅-寿命方程对两类组态TiAl合金低循环疲劳寿命进行预测。结果表明:在相同温度和应变条件下,DP组态TiAl合金稳态迟滞回线对应的平均应力明显低于FL组态TiAl合金稳态迟滞回线对应的平均应力;采用总应变幅-疲劳寿命方程能够准确预测两种组态TiAl合金在750℃下的疲劳寿命,预测寿命基本位于试验寿命的±2倍分散带以内;另外,DP组态TiAl合金的疲劳源区位于试样的近心部,而FL组态TiAl合金的疲劳源区位于试样的次表面,两类组态TiAl合金的高温疲劳失效机理存在明显差异。  相似文献   
88.
脉宽调制(PWM)变频驱动器在提高交流传动系统效率的同时,产生的高次谐波导致共模电流显著增加。其中电动机定子绕组与定子铁心之间的耦合电容是共模电流的主要通路。准确计算定子绕组与定子铁心之间的耦合电容对于预测共模电流具有重要意义。由于电机绕组内部导线排列不规则,准确进行解析计算较为困难,将其简化为集中导体后,会导致计算精度变差。在绕组全散线模型的基础上,提出了一种简化散线建模方法,能在计算精度不变的情况下,有效地减小模型的复杂度。通过对比解析计算、全散线模型、简化散线模型和测量值,验证了该方法的有效性。  相似文献   
89.
针对侧滑转弯(STT)导弹带有攻击角度约束的机动目标拦截问题,提出一种基于自适应终端滑模动态面控制的三维部分制导控制一体化(PIGC)设计方法。首先,建立了针对机动目标拦截的侧滑转弯导弹三维部分制导控制一体化设计模型,且不需要导弹速度微分体轴系分量信息。然后,使用终端滑模控制理论构建误差向量与虚拟控制量,达成精确拦截与攻击角度约束的控制目的;引入有限时间非线性收敛扩张状态观测器(ESO)来在线估计系统不确定性;设计自适应算子与自适应更新律对观测器的估计误差进行补偿,以提高方法的鲁棒性。最后,三维空间拦截仿真校验了方法在提高拦截精度与增强角度约束收敛性能的有效性。  相似文献   
90.
《中国航空学报》2020,33(4):1288-1298
The degradation of components in complex mechatronic systems involves multiple physical processes which will cause coupling interactions among nodes in the system. The interaction of nodes may be carried out not only by physical connections but also by the environment which cannot be described by single network using the traditional methods. In order to give out a unified model to quantitatively describe the coupling degradation spreading by both physical connections and environment, a novel Energy-Flow-Field Network (EFFN) and a coupling degradation model based on EFFN are proposed in this paper. The EFFN is driven by energy flow and the state transition of spatially related nodes is triggered by the dissipation energy. An application is conducted on aviation actuation system in which the degradation spreading by fluid-thermal-solid interaction is considered. The degradation path and the most probable fault reason can be obtained by combining the state transition and energy output of nodes, which is consistent with the given scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号