首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   7篇
  国内免费   19篇
航空   46篇
航天技术   224篇
综合类   9篇
航天   28篇
  2023年   11篇
  2022年   1篇
  2021年   8篇
  2020年   11篇
  2019年   7篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   24篇
  2013年   23篇
  2012年   22篇
  2011年   11篇
  2010年   24篇
  2009年   24篇
  2008年   23篇
  2007年   15篇
  2006年   12篇
  2005年   19篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
71.
In this work we studied the spatial and temporal structure of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation as well as possible reasons for the peculiarities of this structure. The study revealed a strong latitudinal and regional dependence of SA/GCR effects on pressure variations in the lower troposphere which seems to be determined by specific features of baric systems formed in different regions. The temporal structure of SA/GCR effects on the troposphere circulation at high and middle latitudes is characterized by a roughly 60-year periodicity which is apparently due to the epochs of the large-scale atmospheric circulation. It is suggested that a possible mechanism of long-term effects of solar activity and cosmic ray variations on the troposphere circulation involves changes in the evolution of the polar vortex in the stratosphere of high latitudes, as well as planetary frontal zones.  相似文献   
72.
Total Solar Irradiance (TSI) has been measured for more than three decades. These observations demonstrate that total irradiance changes on time scales ranging from minutes to years and decades. Considerable efforts have been made to understand the physical origin of irradiance variations and to model the observed changes using measures of sunspots and faculae. In this paper, we study the short-term variations in TSI during the declining portion and minimum of solar cycle 22 and the rising portion of cycle 23 (1993–1998). This time interval of low solar activity allows us to study the effect of individual sunspot groups on TSI in detail. In this paper, we indicate that the effect of sunspot groups on total irradiance may depend on their type in the Zürich classification system and/or their evolution, and on their magnetic configuration. Some uncertainties in the data and other effects are also discussed.  相似文献   
73.
The performance of JB2008 and NRLMSISE-00 models, in describing the response of the thermosphere to magnetic activity are evaluated against total mass density retrieved from accelerometer measurements made onboard CHAMP satellite during 5 years. We show that the global low- to mid-latitude disturbance amplitude is correctly described by the JB2008 model for low solar activity conditions and by both the JB2008 and the NRLMSISE-00 models for high solar activity conditions. For low solar activity conditions, statistics based on almost 3 years of data confirm the large underestimation by the NRLMSISE-00 model quantified by Lathuillère et al. (2008) for the year 2004. We also found that the time delay between low- to mid-latitude global thermosphere disturbance and magnetic activity is statistically well estimated by the NRLMSISE-00 and JB2008 models for disturbed conditions. For moderately disturbed conditions however, the time delay estimated by the JB2008 model is too large by about 3 h. For very disturbed conditions, we found different time delays during day-time and night-time, using new geomagnetic proxies with a 30-min time resolution.  相似文献   
74.
The aim of the study is to explore whether age at death from cardiovascular diseases depends on solar and geomagnetic activities. The data were collected for 1970–1978 in Novosibirsk, West Siberia, for industrial workers of Siberian origin. The Spearman correlations are computed between linearly detrended lifespan and daily or monthly physical variables to establish immediate (lag, L = 0), delayed (L = 1–3 days) and cumulative (L = ±30 days) influences. Significant correlations ranging from r = −0.26 to r = −0.30 for L from 0 to 3, respectively, are found for men between solar radio flux at wavelength 10.7 cm and age at death from acute myocardial infarction (AMI) but not from acute heart failure, ischemic heart disease and stroke. For AMI, women’s longevity displays an opposite (direct) association with the average solar character occurred at the calendar month of death. The index of geomagnetic activity, Ap, exhibits inverse association with longevity for the AMI stratum for both sexes. GLM univariate procedure revealed higher contribution of Ap to the variance of lifespan compared to season of death. The individual age at death susceptibility to cosmic influences is found to depend upon solar activity at year of birth. It is concluded that associations between the lifespan for cardiovascular decedents and the indices of solar and geomagnetic activities at time of death and of birth are cause-of-death- and sex-specific.  相似文献   
75.
The scenarios for the long-term habitation of space platforms and planetary stations involve plants as fundamental part of Bioregenerative Life Support Systems (BLSS) to support the crew needs. Several constraints may limit plant growth in space: among them ionizing radiation is recognized to severely affect plant cell at morphological, physiological and biochemical level. In this work, plants of Phaseolus vulgaris L. were subjected to four different doses of X-rays (0.3, 10, 50 and 100 Gy) in order to assess the effects of ionizing radiation on this species and to analyze possible mechanisms carried out to overcome the radiation injuries. The effects of X-rays on plant growth were assessed by measuring stem elongation, number of internodes and leaf dry weight. The integrity of photosynthetic apparatus was evaluated by photosynthetic pigment composition and ribulose 1,5-bisphosphate carboxylase (Rubisco) activity, whereas changes in total antioxidant pool and glutathione S transferase activity (GST) were utilized as markers of oxidative stress. The distribution of phenolic compounds in leaf tissues as natural shielding against radiation was also determined.Irradiation of plants at 0.3 and 10 Gy did not determine differences in all considered parameters as compared to control. On the contrary, at 50 and 100 Gy a reduction of plant growth and a decrease in photosynthetic pigment content, as well as an increase in phenolic compounds and a decrease in total antioxidant content and GST activity were found. Only a slight reduction of Rubisco activity in leaves irradiated at 50 and 100 Gy was found. The overall results indicate P. vulgaris as a species with a good potential to face ionizing radiation and suggest its suitability for utilization in BLSSs.  相似文献   
76.
Several important issues are open in the field of solar variability and they wait their solution which up to now was attempted using critical ground-based instrumentations. However, accurate photometric data are attainable only from space. New observational material should be collected with high enough spatial and spectral resolution, covering the whole visible range of the electromagnetic spectrum as well infrared and ultraviolet to reconstruct the total solar irradiance: (1) the absolute contributions of different small-scale structural entities of the solar atmosphere from the white light flares and from micro-flares are still poorly known; (2) we do not know the absolute contributions of different structural elements of the solar atmosphere to the long-term and to the cyclic variations of the solar irradiance, including features of the polar regions of the Sun; (3) the variations of the chromospheric magnetic network are still poorly evaluated; (4) only scarce information is available about the spectral variations of different small-scale features in the high photosphere. Variability of the Sun in white light can be studied with higher spectral, spatial and time resolution using space-born telescopes, which are more appropriate for this purpose than ground based observatories because of better seeing conditions, no interference of the terrestrial atmosphere and a more precise calibration procedure. Scientific requirements for such observations and the possible experimental tools proposed for their solution. Suggested solar studies have broader astrophysical importance.  相似文献   
77.
We have used the Lempel–Ziv measure to describe the complexity in sunspot activity during the solar cycles 18–23. In particular, we examined the time series of daily sunspot numbers in the northern and southern hemispheres in each of the six cycles and calculated the Lempel–Ziv complexity (LZC) value for each time series. Our results indicate that in the even cycles, the LZC values of the sunspot numbers in the two hemispheres are very close to each other, whereas in the odd cycles they differ significantly between the two hemispheres. We also find that within each hemisphere the LZC varies from cycle to cycle. This even–odd cycle parity reflects the variations in inter-hemispheric strengths of the solar magnetic field leading to different temporal distributions of sunspots in the two hemispheres. The degree of complexity may influence the predictability of sunspot activity in the two hemispheres during the various cycles. Although the physical implication of the results is not clear, these results may stimulate new ideas into modeling the complex dynamics of the solar dynamo.  相似文献   
78.
In this paper, we have investigated the intermediate-term periodicities of the relativistic (E > 10 MeV) solar electron flares measured by IMP-8 satellite of NASA for the time period of 1986–2001. This period of investigation includes the entire solar cycle 22; ascending, maximum and a part of descending phase of the current solar cycle 23. To determine accurately the occurrence rate of electron flux, we have employed three different spectral decomposition techniques, viz. fast Fourier transformation (FFT); maximum entropy method (MEM) and Lomb–Scargle periodogram analysis method. For solar cycle 22, in the low frequency range, power spectrum analysis exhibits statistically significant periodicities at ∼706, ∼504 and ∼392 days. In the intermediate frequency range, we have found a series of significant periodicities ∼294, ∼221, ∼153, ∼86, ∼73 and ∼66 days. For short term, periodicities of ∼21–23, ∼31 and ∼37 days were found in power spectrum. When solar cycle 23 is considered the significant periodicities are ∼20, ∼23, ∼29, ∼39, ∼54, ∼63, ∼118, ∼133 and ∼154 days. These results provide evidence that the best known Rieger period (∼153 days), appeared in the high energetic electron flux data for cycle 22 and also likely during maxima of cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   
79.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) is configured with a solenoidal superconducting magnet and a suite of precision particle detectors, including time-of-flight hodoscopes based on plastic scintillators, a silica-aerogel Cherenkov detector, and a high resolution tracking system with a central jet-type drift chamber. The charges of incident particles are determined from energy losses in the scintillators. Their magnetic rigidities (momentum/charge) are measured by reconstructing each particle trajectory in the magnetic field, and their velocities are obtained by using the time-of-flight system. Together, these measurements can accurately identify helium isotopes among the incoming cosmic-ray helium nuclei up to energies in the GeV per nucleon region. The BESS-Polar I instrument flew for 8.5 days over Antarctica from December 13th to December 21st, 2004. Its long-duration flight and large geometric acceptance allow the time variations of isotopic fluxes to be studied for the first time. The time variations of helium isotope fluxes are presented here for rigidities from 1.2 to 2.5 GV and results are compared to previously reported proton data and neutron monitor data.  相似文献   
80.
The high-frequency (HF) emission in near-Earth space from various powerful transmitters (radio communications, radars, broadcasting, universal time and navigation stations, etc.) form an integral part of the modern world that it cannot do without. In particular, special-purpose research facilities equipped with powerful HF transmitters are used successfully for plasma experiments and local modification of the ionosphere. In this work, we are using the results of a complex space-ground experiment to show that exposure of the subauroral region to HF emission can not only cause local changes in the ionosphere, but can also trigger processes in the magnetosphere–ionosphere system that result in intensive substorm activity (precipitations of high-energy particles, aurorae, significant variations in the ionospheric parameters and, as a consequence, in radio propagation conditions).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号