首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   26篇
  国内免费   75篇
航空   211篇
航天技术   32篇
综合类   48篇
航天   7篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   12篇
  2015年   11篇
  2014年   14篇
  2013年   10篇
  2012年   12篇
  2011年   19篇
  2010年   12篇
  2009年   15篇
  2008年   12篇
  2007年   21篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   11篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   19篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
排序方式: 共有298条查询结果,搜索用时 359 毫秒
21.
基于GA-ELM的飞行载荷参数识别   总被引:1,自引:0,他引:1       下载免费PDF全文
针对用复杂飞行数据识别飞行载荷时的精度低、速度慢等问题,提出一种结合遗传算法(GA)和极限学习机(ELM)的GA-ELM模型。该模型使用ELM神经网络作为计算核心,用遗传算法产生ELM网络输入层到隐含层的权值矩阵和隐含层偏移量;用GA-ELM模型对飞行数据进行识别,并与BP神经网络和原始ELM神经网络的识别结果进行对比。结果表明:GA-ELM模型是一种有效且高精度的飞行载荷参数识别方法。  相似文献   
22.
韩景龙  陈全龙  员海玮 《航空学报》2015,36(4):1034-1055
直升机的气动弹性问题与固定翼飞机不同,不仅要考虑单片桨叶,更要将旋翼视为一个整体,考虑其动态入流、尾迹影响以及旋翼与机身之间的相互耦合等。就单片桨叶而言,在结构动力学上,需要考虑离心力场、几何非线性以及桨叶的非线性挥舞-摆振-扭转耦合;在气动力上,需要考虑动态入流以及桨尖处可能的失速效应,本质上属于非线性气动弹性力学范畴。由于旋翼气动力通常是以周期形式通过旋翼轴传给机身,并引起机身振动,而机身运动又通过改变桨叶根部形态反过来影响旋翼的气动弹性特性,这种旋翼/机身耦合问题,也是近年来直升机气动弹性问题研究中的重要方向和热点之一。此外,随着旋翼流场数值分析方法的日趋成熟,采用动态重叠网格或滑移网格方法来实现桨叶运动,并通过动网格技术来实现桨叶的弹性变形,从而实现弹性旋翼流场的数值模拟,目前正呈现出勃勃生机,成为直升机气动弹性研究的又一重要方向和热点。随着各种新构型直升机的相继出现,如倾转旋翼机、前行桨叶概念旋翼(ABC)直升机和复合式直升机等,也带来了新的气动弹性问题。不断发现问题、解决问题,推动本学科持续发展,永远是气动弹性工作者终身奋斗的目标。  相似文献   
23.
三相四桥臂逆变器可以带不平衡负载甚至单相负载。针对三相四桥臂逆变 器,提出了一种新的重复控制算法。该算法相对于传统恒压恒频(CVCF) 控制算法具 有设计简单, 不需要dq 变换, 在提高电压稳态精度的同时, 还降低了输出电压总谐波 含量(THD)。系统分析了三相四桥臂逆变器电路模型,得到整个系统的传递函数,分 析了系统的稳态误差和稳定性。最后通过仿真和试验验证了系统输出电压稳态精度高, 谐波含量低,且能有效抑制由不平衡负载引起的输出电压不平衡。  相似文献   
24.
为了研究气动力非线性对飞机静气动弹性特性及飞行载荷的影响,发展了一种基于非线性气动力的飞机静气弹及飞行载荷计算方法。通过引入CFD计算结果,实现对线性方法中的气动力影响系数矩阵的非线性修正,采用模态法求解静气弹配平方程得到飞机非线性的气弹变形及飞行载荷。以某翼身组合体构型为计算算例,分别针对刚性模型和柔性模型,基于非线性气动力完成了飞机静气动弹性分析及载荷计算,并与线性结果进行了对比分析。结果表明,非线性方法可对大迎角范围内飞机静气弹变形及飞行载荷做出较合理的预测。  相似文献   
25.
Dynamicloadisoneoftheimportantoriginalparametersinstructuraldynamicanalysis.Ithasobviousinfluencestodynamicsdesign,vibrationcontrols,activecontroltechnologyandsoon.Sincel97O,manyresearchitemsinthisfieldhavebeenaccomplishedintheworld-Sometheoriesandexperimentalmethodsofdynamicloadidentificationhadbeencreatedinfrequencydomain[l'2J-Howeverftherearesomedisadvantagesthattheycouldbeadaptedonlytoidenti-fythesteady-stateloadandnottoidentifythetransientload,suchasshockloadwithshortsampling.Forvarious…  相似文献   
26.
随着飞机性能和需求的提高,大展弦比高柔性机翼逐渐成为新型飞机的主要结构形式。这类机翼具有高升阻比、大变形和重量轻等特性,几何非线性效应明显。然而机翼的大展弦比高柔性会带来更大的机翼变形,而机翼大变形则会引起相关的非线性气动弹性行为。为了评估这些非线性气动弹性行为并同时降低设计风险和成本,一般要使用缩比模型进行风洞试验以研究和确认真实飞机的气动弹性特性。基于此,首先使用了传统线性缩比方法来进行缩比,通过刚度质量耦合匹配模态响应法与刚度质量解耦匹配模态响应法这2种线性缩比方法,不断优化缩比结构的设计参数来满足目标缩比值。同时,提出一种动力学有限元模型的非线性静响应-模态协同优化方法,该方法是基于等效静态载荷法的几何非线性气动弹性模型缩比方法,通过2个不同的优化子程序分别匹配全尺寸飞机的非线性静响应和模态振型。结果表明,相比于传统线性缩比模型,考虑几何非线性的缩比模型能够更好地再现全尺寸飞机的非线性气动弹性行为。   相似文献   
27.
脉冲爆震载荷作用下转子系统动力学特性   总被引:1,自引:0,他引:1  
针对脉冲爆震涡轮发动机(PDTE)气动载荷具有周期性、非定常的特点,应用有限元法建立了PDTE转子系统动力学特性计算模型。在验证计算模型准确性的基础上,研究了周期性、非定常轴向力和扭矩对转子系统动力学特性的影响。研究结果表明:与传统燃气涡轮发动机相比,PDTE转子系统同时存在弯曲振动、轴向振动和扭转振动。脉冲爆震燃烧室的气动载荷会改变转子系统的弯曲刚度,但对气动载荷合理设计后,其对弯曲振动的影响较小。周期性、非定常轴向力引起转子系统轴向振动,且轴向振动特性主要受零频和1阶轴向共振频率处响应的影响。PDTE工作时滚珠轴承的轴向支反力会不断变向,在设计滚珠轴承时应予以考虑。周期性、非定常扭矩引起转子系统扭转振动,1阶扭转共振频率分量在扭转振动响应中占优。   相似文献   
28.
密封汽流激振严重影响超超临界汽轮机的安全运行,采用DEFINE_CG_MOTION和DEFINE_PROFILE控制宏建立转子的涡动方程,通过Workbench流固耦合方法计算热、动载荷下密封齿形变,根据快速傅里叶变化得到机组运行时的密封动力特性,并对转子稳定性进行分析。结果表明:蒸汽可导致密封齿膨胀变形,温度对密封齿长度变化影响可达1%~1.5%,压力和离心作用对其影响较小。热、动载荷使迷宫密封直接刚度减小,直接阻尼先增加后减小,交叉刚度先减小后增加,动力系数的最大变化为原来的2倍。35~55 Hz内转子稳定裕度急剧下降,转子对密封汽流激振更敏感。热、动载荷引起的压力波动集中在低频范围,密封周向压力波动可增高18.5 kPa。密封高压区的压力波幅剧增是汽流激振显著的主要原因。   相似文献   
29.
空客公司的成功离不开其先进的机翼设计,其机翼由英国宇航公司负责设计和生产。空客飞机机翼先进的空气动力设计,包括尖峰后加载翼型、超临界翼型、先进跨声速机翼设计——超临界机翼设计、机翼与机身的干扰、翼梢小翼设计、增升装置设计,机翼低重量设计、机翼构型与载荷,详细设计,结构设计和低成本设计等。作为系列论文之一,综述A300及A310的机翼设计特点。  相似文献   
30.
使用自行开发的非定常流固耦合数值模拟程序,研究了上游叶排影响转子叶片颤振特性的机理,采用影响系数法分析轴向间距影响转子气动弹性稳定性的规律。结果表明:在协调叶栅中,叶片吸力面相邻的叶片振动对转子叶片气动阻尼的大小起决定性作用,其影响甚至超过振动叶片本身的影响;多排环境中,导叶(IGV)对转子叶片气动阻尼最小值的影响最大,并使其对应的节径增大;相邻叶片振动引起的通道变化抑制了导叶对非定常压力波的反射作用;随着轴向间距的减小,导叶对非定常压力波的反射作用减弱了非定常压力波的周向衰减,从而增大了叶片振动的非定常影响范围;在多排环境中使用影响系数法需要测量更多的叶片才能得到较为准确的气动阻尼。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号