首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   5篇
  国内免费   5篇
航空   44篇
航天技术   32篇
综合类   5篇
航天   16篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   9篇
  2008年   8篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   8篇
  1998年   1篇
  1995年   1篇
  1994年   11篇
  1993年   2篇
排序方式: 共有97条查询结果,搜索用时 187 毫秒
91.
The SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) has observed the extended solar corona between 1 and 10 R· for more than two years. We review spectroscopic and polarimetric measurements made in coronal holes, equatorial streamers, and coronal mass ejections, as well as selected non-solar targets. UVCS/SOHO has provided a great amount of empirical information about the physical processes that heat and accelerate the solar wind, and about detailed coronal structure and evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
92.
93.
To investigate the feasibility of new satellite observations, including air quality (AQ) observations from geostationary (GEO) orbit, it is essential to link the measurement precision (ε) with sensor specifications in advance. The present study attempts to formulate the linkage between ε and specifications of a UV/visible sensor (signal-to-noise ratio (SNR), full width at half maximum (FWHM) of the slit function, and sampling ratio (SR)) on a GEO satellite. A sophisticated radiative transfer model (JACOSPAR) is used to calculate synthetic radiance spectra that would be measured by a UV/visible sensor observing the atmosphere over Tokyo (35.7°N, 139.7°E) from GEO orbit at 120°E longitude. The spectra, modified according to given sensor specifications, are analyzed by the differential optical absorption spectroscopy technique to estimate the ε for slant column densities of O3 and NO2. We find clear relationships: for example, the ε of the O3 slant column density (molecules cm−2) and SNR at 330 nm are linked by the equation log(ε) = −1.06 · log(SNR) + 20.71 in the UV region, and the ε of the NO2 slant column density and SNR at 450 nm are linked by log(ε) = −0.98 · log(SNR) + 18.00, at a FWHM = 0.6 nm (for the Gaussian slit function) and SR = 4. The relationships are mostly independent of other specifications (e.g., horizontal and temporal resolutions), as they affect ε primarily through SNR, providing constraints in determining the optimal SNR (and alternatively FWHM and SR) for similar UV/visible sensors dedicated for AQ studies.  相似文献   
94.
Although static loop models are often used to describe the structure of coronal loops, it is evident on both observational and theoretical grounds that mass motions play a crucial role in the physics of the corona and transition region. First we review the observations of emission-line broadening and wavelength shifts, which imply the presence of random motions and systematic downflows in coronal loops. Some discrepancies in the observations are discussed. It is argued that velocities due to gas pressure gradients are the most likely explanation for the observed flows. A number of models that have been proposed for these motions are reviewed. The implications of the various models on observations of the corona and transition region by SOHO are discussed.  相似文献   
95.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   
96.
The European Stratospheric Balloon Observatory (ESBO) initiative aims at simplifying the access to stratospheric balloon missions. We plan to provide platforms and support with instrument design in order to support scientists. During the design process, the inevitable question of qualification for the harsh flight conditions arises. Unfortunately, there is no existing standard for qualification of stratospheric ballooning hardware. Thus, we developed a qualification procedure for use within ESBO and similar projects.In this paper, we present our analysis of the environmental conditions in the stratosphere. While conditions at typical balloon float altitudes are similar to the space environment, there are also some relevant differences. For example, the thermal environment is dominated by radiation and thermal conduction, but the remaining atmosphere still supports a certain amount of convection. The remaining atmospheric pressure in the stratosphere also leads to reduced arcing distances. Vibrational loads are far less than for space missions, but quasi-static or shock loads may occur. The criticality of radiation increases with mission duration.Based on the environmental conditions, we present the qualification procedures for ESBO, which are based on the European Cooperation for Space Standardization (ECSS) standards for space systems. Overtesting against too high requirements leads to overengineering, driving mission cost and mitigating the advantages of balloons over space missions. Therefore, we modified the ECSS standards to fit typical scientific ballooning missions over several days at altitudes up to 40 km. Furthermore, we analyzed design rules for space systems with regard to their relevance for scientific ballooning, including material and component selection. We present the experience from the hardware qualification process for the ESBO prototype STUDIO (Stratospheric UV Demonstrator of an Imaging Observatory). Even though boundary conditions are different for each individual mission, we aimed for a broader approach: We investigated more general requirements for scientific ballooning missions to support future flights.  相似文献   
97.
LED照明技术在飞机外部照明系统中的应用分析   总被引:1,自引:1,他引:0  
外部照明是飞机照明系统的一个重要组成部分,在飞机起飞、巡航、着陆等过程中为其提供空中信息。外部照明对灯具的性能要求很高,如高强度、抗振动、长寿命、高可靠性等,且不同灯具实现不同功能,有特定的光分布要求,而采用传统光源的外部照明难以满足这些不断提高的技术要求。LED照明具有高亮度、低功耗、长寿命等技术优势,有助于促进飞机外部照明技术更好的发展。对LED照明技术及飞机外部照明系统的特点进行了分析,探讨了LED照明技术在飞机外部照明系统中的应用优势与前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号