全文获取类型
收费全文 | 300篇 |
免费 | 13篇 |
国内免费 | 2篇 |
专业分类
航空 | 104篇 |
航天技术 | 180篇 |
综合类 | 1篇 |
航天 | 30篇 |
出版年
2024年 | 1篇 |
2023年 | 10篇 |
2021年 | 6篇 |
2020年 | 6篇 |
2019年 | 9篇 |
2018年 | 13篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 10篇 |
2013年 | 10篇 |
2012年 | 12篇 |
2011年 | 6篇 |
2010年 | 11篇 |
2009年 | 26篇 |
2008年 | 31篇 |
2007年 | 36篇 |
2006年 | 12篇 |
2005年 | 11篇 |
2004年 | 3篇 |
2003年 | 9篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1999年 | 7篇 |
1998年 | 17篇 |
1996年 | 4篇 |
1995年 | 1篇 |
1994年 | 39篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 2篇 |
排序方式: 共有315条查询结果,搜索用时 15 毫秒
11.
N.C. Joshi W. Uddin A.K. Srivastava R. Chandra N. Gopalswamy P.K. Manoharan M.J. Aschwanden D.P. Choudhary R. Jain N.V. Nitta H. Xie S. Yashiro S. Akiyama P. Mäkelä P. Kayshap A.K. Awasthi V.C. Dwivedi K. Mahalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
12.
H.S. Ahluwalia J. Jackiewicz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The decay phase of the sunspot cycle 23 exhibited two unusual features. First, it lasted too long. Second, the interplanetary magnetic field intensity at earth orbit reached the lowest value since in situ measurements in space began in October 1963. These physical anomalies significantly altered the early forecasts for the sunspot activity parameters for cycle 24, made by several colleagues. We note that there was a significant change in the solar behavior during cycle 22. We discuss the observed trends and their effect on our empirical solar activity forecast technique, leading to our prediction for cycle 24 parameters; cycle 24 will be only half as active as cycle 23, reaching its peak in May 2013. We speculate on the possible implications of this outcome on future earth climate change and the ensuing socio-economic consequences. 相似文献
13.
S. Ibadov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Problems connected with mechanisms for comet brightness outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that irradiation of a certain class of comet nuclei, having high specific electric resistance, by intense fluxes of energetic protons and positively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface zone of the nucleus, during irradiation times of the order of 10–100 h at heliocentric distances around 1–10 AU. The maximum electric energy accumulated in such layer will be restricted by the electric discharge potential of the layer material. For comet nuclei with typical radii of the order of 1–10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground based optical observations. The impulse gamma and X-ray radiation together with optical burst from the comet nucleus during solar flares, anticipated due to high-voltage electric discharge, may serve as an indicator of realization of the processes above considered. Multi-wavelength observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using ground based optical telescopes as well as space gamma and X-ray observatories, during strong solar flares, are very interesting for the physics of comets as well as for high energy astrophysics. 相似文献
14.
Jin Zhang Ya-zhong Luo Guo-jin Tang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
By developing approximate analytical models considering the J2 perturbation, the effects of an in-track maneuver on the orbital Sun illumination conditions of near-circular low Earth orbits are analyzed. First, two approximate models for the variations in orbital sunshine angles are developed, one for variations at a given time and the other for variations at a given argument of latitude. Next, two approximate models for variations in orbital arc in Earth shadow are developed, one considers the small eccentricity and the other uses the zero eccentricity. Finally, the developed approximate models are applied to analyzing the Sun illumination conditions of a typical in-track maneuver mission on a near-circular low Earth orbit. From the results obtained, three major conclusions can be drawn. First, the variations in orbital sunshine angles at a given time may reach tens of degrees when the drifting time reaches hundreds of orbital periods, and the approximate model for that situation cannot effectively approach the numerical results. Second, the variations in orbital sunshine angles for any given argument of latitude are only a couple of degrees even when the drifting time reaches 500 orbital periods, and the approximation model developed can effectively approach the numerical results. Third, for variations in orbital arc in Earth shadow, the approximate model considering the small eccentricity has simple expressions and can effectively approach the numerical results; in contrast, the approximate model using the zero eccentricity has relatively worse precision. 相似文献
15.
Fridrich Valach Josef Bochníček Pavel Hejda Miloš Revallo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The paper deals with the relation of the southern orientation of the north–south component Bz of the interplanetary magnetic field to geomagnetic activity (GA) and subsequently a method is suggested of using the found facts to forecast potentially dangerous high GA. We have found that on a day with very high GA hourly averages of Bz with a negative sign occur at least 16 times in typical cases. Since it is very difficult to estimate the orientation of Bz in the immediate vicinity of the Earth one day or even a few days in advance, we have suggested using a neural-network model, which assumes the worse of the possibilities to forecast the danger of high GA – the dominant southern orientation of the interplanetary magnetic field. The input quantities of the proposed model were information about X-ray flares, type II and IV radio bursts as well as information about coronal mass ejections (CME). In comparing the GA forecasts with observations, we obtain values of the Hanssen–Kuiper skill score ranging from 0.463 to 0.727, which are usual values for similar forecasts of space weather. The proposed model provides forecasts of potentially dangerous high geomagnetic activity should the interplanetary CME (ICME), the originator of geomagnetic storms, hit the Earth under the most unfavorable configuration of cosmic magnetic fields. We cannot know in advance whether the unfavorable configuration is going to occur or not; we just know that it will occur with the probability of 31%. 相似文献
16.
17.
B. Sylwester J. Sylwester K.J.H. Phillips E. Landi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We present the observations of He-like Ar triplet lines obtained by RESIK spectrometer aboard CORONAS-F. Interpretation of intensity ratios between triplet lines of lower Z elements is known to provide useful diagnostics of plasma conditions within the emitting source. Here, we investigate whether triplet line ratios are useful for interpretation of higher Z element spectra. A high sensitivity, low background and precise absolute calibration of RESIK allow to consider in addition also the continuum contribution. This provides a way to determine the Ar absolute abundance from the observed triplet component ratios. The method is presented and the results are shown for two selected flares. Derived values of Ar absolute abundance for these flares are found to be similar: 2.6 × 10−6 and 2.9 × 10−6. They fall in the range between presently accepted Ar photospheric and coronal abundances. 相似文献
18.
S.A. Demin Y.A. Nefedyev A.O. Andreev N.Y. Demina S.F. Timashev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):639-644
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
19.
Iñigo Arregui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):655-672
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions. 相似文献
20.
Keith T. Strong 《Space Science Reviews》1994,70(1-2):133-142
We review recent observations by the Yohkoh-SXT in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (32 s full-disk and 2 s partial-frame images), high spatial resolution (2.5 arcsec pixels), high sensitivity (EM 1042 cm–3), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations, SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant increase in the ratio of the footpoint to loop-top diameter () are the exception, not the rule, implying the presence of widespread currents in the corona.All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly. Their coronal manifestation seems to be an extended arcade of loops overlying the filament. Reliable alignment of the ground-based data with the X-ray images make it possible to make a detailed intercomparison of the hot and cold plasma structures over extended periods. Hence we are able to follow the long-term evolution of these structures and see how they become destabilized and erupt. 相似文献