首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   14篇
  国内免费   8篇
航空   44篇
航天技术   37篇
综合类   3篇
航天   8篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2009年   8篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
61.
运用计算机实验方法即三维电磁粒子模拟方法初步研究了暴时扰动情况下外辐射带粒子环境的动态演化特性。模拟计算了暴时辐射带粒子环境的演化情况。模拟计算结果显示,高能质子、电子注入午辐射滞后,两者一方面沿磁力线做弹跳运动,向高纬扩展,部分注入质子和电子沉降于南北两极区域;另一方面,注入质子和电子还经历顺时针和逆时针方向的漂移运动,粒子能量越大,漂移速度越快。暴时多次注入引起整个辐射带粒子能量的大幅增强;粒子注入颗次和强度越大,辐射带粒子通量增幅越大。本项研究为开发研制完整的辐射带动态模式积累了有益的经验。  相似文献   
62.
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs, (Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the He-liospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs. The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax> 10cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line (sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax> 10cm-3.  相似文献   
63.
介绍了空间站各系统密封材料的使用环境及对材料的性能要求;对空间站中气动系统、推进系统和液压系统使用的密封材料进行了配方研制;重点对气动系统密封材料的环境适应性与空间卫生性给出了评估。结果表明,材料满足航天器使用环境的需要。  相似文献   
64.
Summarized below are the discussions of working group 3 on "Coronal hole boundaries and interactions with adjacent regions" which took place at the 7th SOHO workshop in Northeast Harbor, Maine, USA, 28 September to 1 October 1998. A number of recent observational and theoretical results were presented during the discussions to shed light on different aspects of coronal hole boundaries. The working group also included presentations on streamers and coronal holes to emphasis the difference between the plasma properties in these regions, and to serve as guidelines for the definition of the boundaries. Observations, particularly white light observations, show that multiple streamers are present close to the solar limb at all times. At some distance from the sun, typically below 2 R, these streamers merge into a relatively narrow sheet as seen, for example, in LASCO and UVCS images. The presence of multiple current sheets in interplanetary space was also briefly addressed. Coronal hole boundaries were defined as the abrupt transition from the bright appearing plasma sheet to the dark coronal hole regions. Observations in the inner corona seem to indicate a transition of typically 10 to 20 degrees, whereas observations in interplanetary space, carried out from Ulysses, show on one hand an even faster transition of less than 2 degrees which is in agreement with earlier Helios results. On the other hand, these observations also show that the transition happens on different scales, some of which are significantly larger. The slow solar wind is connected to the streamer belt/plasma sheet, even though the discussions were still not conclusive on the point where exactly the slow solar wind originates. Considered the high variability of plasma characteristics in slow wind streams, it seems most likely that several types of coronal regions produce slow solar wind, such as streamer stalks, streamer legs and open field regions between active regions, and maybe even regions just inside of the coronal holes. Observational and theoretical studies presented during the discussions show evidence that each of these regions may indeed contribute to the solar slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
65.
局部多孔壁-内腔结构的气动加热瞬态特性   总被引:4,自引:0,他引:4  
根据超声速飞行器外表面连接结构处密封结构几何特征,以局部多孔壁和内腔结构为研究对象,建立流/固/多孔区域流动和传热过程耦合计算模型,其中多孔区域中运用分布阻力法,流、固区域间换热过程采用准稳态耦合计算方法。经过与相关实验数据进行对比,验证了程序可靠性,并进一步分析在整个长时间瞬态过程中,该密封结构的流动和传热特征,阐明了在瞬态过程中多孔材料等效热流对缝隙壁面的加热作用。研究了有、无多孔材料填充两种情况下缝隙壁面热流分布形态的差异,探讨了缝隙中填充多孔材料对高速流场边界层热气流侵入内腔过程的影响。
  相似文献   
66.
In low earth orbit, the SAA region is the dominant contributor to both proton environment and electron environment from the standpoint of radiation dose for spacecraft lifetime. However, the polar region and the horn region are sometimes strongly disturbed due to large solar and geomagnetic events. During large disturbances, enhancements in proton flux are measured in the polar region, which gives temporary more severe space radiation environment than that given in the SAA region. On the other hand, enhancements in electron flux are measured mainly in the horn region corresponding to the outer radiation belt, which are likely sources of high-energy electrons in the inner radiation belt. These short-term disturbances have another radiation hazard to spacecraft such as single event and electrostatic discharge.  相似文献   
67.
利用SAMPEX卫星1992年7月至2004年6月19~27MeV高能质子数据对南大西洋异常区的分布特征进行研究, 发现南大西洋异常区高能质子分布随高度及F10.7的变化十分显著. 在540±25km高度上, 地磁较为平静时期南大西洋异常区高能质子微分通量随着F10.7的增大而减小, 同时在F10.7≥115sfu时减小趋势较为平缓. 对中等及以上磁暴进行统计分析发现, 磁暴期间南大西洋异常区高能质子微分通量和SYM-H指数的绝对值存在明显的反相关关系, 且地磁暴对南大西洋异常区高能质子微分通量存在明显的持续影响效应. 磁暴发生期间高能质子微分通量明显减少. 磁暴恢复相及其之后高能质子微分通量呈现较为显著的恢复过程.   相似文献   
68.
木星环绕探测任务中的内带电风险评估   总被引:6,自引:3,他引:3  
木星拥有类似地球辐射带的辐射带结构,其辐射带质子通量是地球的10倍,高能电子通量比地球高2~3个数量级,且最高能量可达1 Ge V。因此木星探测任务的抗辐射设计是任务成功的关键。选择3种不同倾角大椭圆探测轨道,仿真分析了2种介质在变化能谱下的内带电过程。仿真结果表明,对于环氧树脂(Fr4),由于电阻相对较小,电子通量较大的近木点的充电电荷,会在远离辐射带时泄放,其最大充电电场取决于近木点的电子通量;对于聚酰亚胺(Kapton),由于电阻相对较大,充电电荷不能及时泄放,不同轨道间电荷逐渐累计,最大电场不断增加。另外,环木轨道倾角越大,越有利于降低充电电场。和地球GEO轨道相比,不同电阻介质在环木轨道的充电差异相对地球GEO轨道较小。  相似文献   
69.
通过分析SiC材料的加工特点及难点,针对SiC材料成型后加工易产生崩边、开裂等问题,设计并搭建了机器人砂带柔性磨削系统,开展了相关试验研究工作。结果表明, 所搭建的砂带磨削系统可有效避免SiC材料加工过程中的崩边、开裂问题。  相似文献   
70.
It is well known that during many but not all of the geomagnetic storms enhanced fluxes of high-energy electrons are observed in the outer radiation belt. Here we examine relativistic (>2 MeV) electron fluxes measured by GOES at the synchronous orbit and on-ground observations of two types of ULF pulsations during 30 magnetic storms occurred during 1996–2000. To characterize the effectiveness of the chosen magnetic storms in producing relativistic electron fluxes, following to (Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.R. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, doi:10.1029/2002GL016513, 2003), we calculate a ratio of the maximum daily-averaged electron flux measured during the recovery phase, to the mean pre-storm electron flux. A storm is considered an effective one if its ratio exceeds 2. We compare behavior of Pi1 and Pc5 geomagnetic pulsations during effective and non-effective storms and find a tendency for a storm efficiency to be higher when the mid-latitude Pi1 pulsations are observed for a long time during the magnetic storm main phase. We note also that the prolonged powerful Pc5 pulsation activity during the recovery phase of a magnetic storm is the necessary condition for the storm effectiveness. To interpret the found dependences, we suggest that there are two prerequisites for generating relativistic electron populations during a storm: (1) the availability of seed electrons in the magnetosphere, and Pi1 emissions are indicators of the mid-energy electron interaction with the ionosphere and (2) acceleration of the seed electrons to MeV energies, and interaction of electrons with the MHD wave activity in the Pc5 range is one of the most probable mechanisms proposed in the literature for this purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号