首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   28篇
  国内免费   13篇
航空   63篇
航天技术   38篇
综合类   2篇
航天   45篇
  2024年   2篇
  2023年   8篇
  2022年   9篇
  2021年   14篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   3篇
  2012年   3篇
  2011年   12篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   6篇
  2006年   3篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
81.
Doppler, which is an instantaneous GNSS observable signal, has been proven effective in determining velocity and acceleration due to its high availability and accuracy. We propose a real-time triple-frequency cycle slip correction (CSC) method based on Doppler-aided signals because Doppler shift is time-independent and immune to cycle slips. When the sampling interval is less than 1 s, cycle slips on triple-frequency can be detected and repaired using pure Doppler data with high reliability; however, this method cannot be used when the sampling interval exceeds 1 s because the integral cumulative error of Doppler increases significantly. For such cases, a modified triple-frequency CSC approach has been developed based on the raw phase and smoothed code data that was refined using the Doppler signal. To suppress the effect of the integral Doppler error, a balance factor is introduced to adjust the contributions of the raw code and Doppler observables. After the refinement of the GNSS data, three independent combinations need be selected to detect and repair cycle slips with triple-frequency observations. Four constrained criteria have been proposed to select optimal combinations that can reduce the residual ionospheric delay (RID) and measurement noise to a low level. Finally, experiments were carried out to test the performance of the new method using real triple-frequency BDS observations (GPST: 3:15:00–5:55:00, March 23, 2018). The results show that pure Doppler can detect and repair cycle slips effectively with small intervals, and modified Hatch-Melbourne-Wübbena (HMW) method based on Doppler-aided signals can achieve 99.7% success rate in cycle slip correction with large intervals (up to 30 s).  相似文献   
82.
The possibility to access undifferenced and uncombined Global Navigation Satellite System (GNSS) measurements on smart devices with an Android operating system allows us to manage pseudorange and carrier-phase measurements to increase the accuracy of real-time positioning. The goal is to perform real-time kinematic network positioning with smartphones, evaluating the positioning accuracy regarding an external mass-market device. The positioning of Samsung Galaxy S8+ and Huawei P10 plus smartphones was performed using a dedicated tool developed by the authors, considering a continuous operating reference station (CORS) network with a mean inter-station distance of about 50?km. The same positioning technique was also applied to an external GNSS low-cost single-frequency receiver (u-blox EVK-M8T) to compare performance between the receiver and antenna embedded in the previous smartphones and this low-cost receiver coupled with a mass-market antenna (Garmin GA38). Attention was also focused on the phase ambiguity resolution, that it is still a challenging aspect for mass-market devices: even if the two smartphones provide slightly different results, the accuracy obtainable today is greater than 60?cm with a precision of few centimetres in real-time, if a CORS network is available. For real-time applications using portable devices, decimetre-level accuracy is sufficient for many applications, such as rapid mapping and search and rescue activities: these results will open new frontiers in terms of real-time positioning with portable low-cost devices.  相似文献   
83.
For precise position services, the real-time precise point positioning (PPP) is a promising technology. The real-time PPP performance is expected to be improved by multi-system combination. The performance of real-time multi-system PPP needs to be periodically investigated, with the increasing number of available satellites and the continuously improved quality of real-time precise products of satellite clocks and orbits. In this study, a comprehensive performance assessment is conducted for the four-system integrated real-time PPP (FSIRT-PPP) with GPS, BDS, Galileo and GLONASS in both static and kinematic modes. The datasets from 118 stations spanning approximately a month are used for analysis, and the real-time stream CLK93 is employed. The superior performance of FSIRT-PPP is validated by comparing with the results of GPS/BDS, GPS/Galileo, GPS/GLONASS, GPS-only, BDS-only, Galileo-only and GLONASS-only cases. The FSIRT-PPP using ionospheric-free (IF) combined observables can achieve a convergence time of 10.9, 4.8 and 11.8 min and a positioning accuracy of 0.4, 0.5 and 0.7 cm in the static mode in the east, north and up directions, respectively, while the derived statistic is 15.4, 7.0 and 16.4 min, and 1.6, 1.2 and 3.4 cm in the kinematic mode in the three directions, respectively. Moreover, we also compare the position solutions of real-time PPP adopting IF combined and uncombined (UC) observables, and prove the mathematical equivalence between the two PPP models in the converged stage, provided that there are no external ionospheric corrections or constraints given to the estimated ionospheric delays in the UC model. The difference between the fully converged positioning accuracy of IF-based and UC-based real-time PPP is marginal, but the UC-based real-time PPP has longer convergence time due to the influence of the significant unmodeled time-varying errors in the real-time precise products as well as the different parameterization between them. For completeness, the real-time kinematic PPP results in harsh environments and the post-processed PPP results are also presented.  相似文献   
84.
To ensure the compatibility and interoperability with modernized GPS, Galileo satellites are capable of broadcasting navigation signals on carrier phase frequencies that overlap with GPS, i.e., GPS/Galileo L1-E1/L5-E5a. Moreover, the GPS/Galileo L2-E5b signals have different frequencies with wavelength differences smaller than 4.2?mm. Such overlapping and narrowly spaced signals between GPS and Galileo bring the opportunity to use the tightly combined double-differenced (DD) model for precise real-time kinematic (RTK) positioning, resulting in improved performance of ambiguity resolution and positioning with respect to the classical standard or loosely combined DD model. In this paper, we focus on the model and performance assessment of tightly combined GPS/Galileo L1-E1/L2-E5b/L5-E5a RTK for short and long baselines. We first investigate the tightly combined GPS/Galileo DD observational model for both short and long baselines with simultaneously considering the GPS/Galileo overlapping and non-overlapping frequencies. Particularly, we introduce a reparameterization approach to solve the rank deficiency that caused by the correlation between the DISB parameters and the DD ionospheric parameters for both overlapping and non-overlapping frequencies. Then we present performance assessment for the tightly combined GPS/Galileo RTK model with real-time estimation of the differential inter-system bias (DISB) parameters for short and long baselines in terms of ratio value, ambiguity dilution of precision (ADOP), ambiguity conditional number, decorrelation number, search count, empirical success rate, time-to-first-fix (TTFF), and positioning accuracy. Results from both static and kinematic experiments demonstrated that compared to the loosely combined model, the tightly combined model can deliver improved performance of ambiguity resolution and precise positioning with different satellite visibility. For the car-driven short baseline experiment with 10° elevation cut-off angle, the tightly combined model can not only significantly increase the ratio value by approximately 27.5% (from 16.0 to 20.4), but also reduce the ambiguity ADOP, the conditional number, and the search count in LAMBDA by approximately 22.2% (from 0.027 to 0.021 cycles), 14.9% (from 199.2 to 169.6), and 25.4% (from 150.1 to 112.0), respectively. Comparable decorrelation number, empirical success rate, and positioning accuracy are also obtained. For the car-driven long baseline experiment, it is also observed that the ambiguity resolution performance in terms of the ratio value, the decorrelation number, the condition number, and the search count are significantly improved by approximately 18.5% (from 2.7 to 3.2), 22.0% (from 0.186 to 0.227), 55.9% (from 937.6 to 413.7), and 10.3% (from 43.8 to 39.3), respectively. Moreover, comparable ADOP, empirical success rate, and positioning accuracy are obtained as well. Additionally, the TTFF can be reduced (from 54.1 to 51.8 epochs with 10° elevation cut-off angle) as well from the results of static experiments.  相似文献   
85.
数字化车间的建设是航天产品制造企业实现智能制造的关键环节,为了实现车间的自主决策和自组织生产,设备互联、自动感知、虚拟监控以及实时分析等技术已经在工业界得到了广泛的重视。结合我国航天领域首个数字化车间建设项目,利用虚拟现实(VR)技术与车间信息通信技术(ICT),研发车间现场实时数据的采集与管理、生产线效能评估建模、人机交互式三维/二维集成可视化等功能模块。通过与其他信息系统如MES等进行数据集成,构建基于实时数据驱动的生产线运行状态监控平台,实现透明化生产,提高生产运营管理水平。  相似文献   
86.
为了适应未来航天测控系统的发展趋势,提出了VRTCS(虚拟无线电测控系统)硬件平台和软件系统的基本结构。以通用高性能计算机作为系统的硬件平台,采用分层结构模型设计系统体系结构,使得航天测控系统具备更好的通用性和灵活性。阐述了VRTCS的基本概念和总体结构,对系统各组成部分的功能、组成和用途进行了分析;对测控系统中构件进行分层设计,开发原型软件实现测控系统的核心应用;以统一载波测控系统为模型,通过测控信号接入试验,验证了VRTCS的可行性。  相似文献   
87.
文章针对椭圆轨道编队卫星最优燃料机动的实时计算问题进行研究。利用LGL伪谱法对问题进行快速求解。由于最优燃料控制为非连续控制,如直接采用伪谱法则只有当离散点数目很大时,才能实现较高精度的编队机动控制,而这会影响算法的实时计算效率。为了克服这方面的不足,文章提出了一种时间尺度变换策略,并结合模型预测的滚动优化方法,设计了一种编队实时机动控制算法。该算法在兼顾解的全局最优性的同时改善了解的局部精确性,最后通过数值仿真验证了所设计算法的有效性。  相似文献   
88.
三维实时动画技术在运载火箭飞行视景仿真中的应用   总被引:2,自引:0,他引:2  
解蓓黎 《航空计算技术》1998,28(4):43-45,58
介绍了三维实时动画技术实现飞行器视景仿真的基本原理,并介绍了如何在SGI图形工作站及OPenGL图形库支持下开发运载火箭飞行视景仿真软件,重点介绍了三维实时动画技术在该系统中的软件实现。  相似文献   
89.
利用GPS载波相位实时测定动态飞行器姿态   总被引:8,自引:1,他引:7       下载免费PDF全文
本文阐述了利用GPS载波相位信号进行实时飞行器姿态测定的基本思想,建立了整个系统实时确定载体姿态的数学模型;给出了动态整周模糊单差的求解过程,阐明了其物理意义.  相似文献   
90.
多线程机制应用于测控实时系统的关键技术研究   总被引:1,自引:0,他引:1  
和传统的进程机制相比,多线程机制具有节省系统的存储资源,减少系统的控制、调度、通信和同步开销,以及内核并发的特征,这些特征能够提高实时系统的实时性能。本文以测控实时系统的开发为例,说明多线程机制应用于实时系统中的优势以及开发中需要解决的关键问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号