首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   232篇
  国内免费   213篇
航空   1256篇
航天技术   85篇
综合类   176篇
航天   33篇
  2024年   2篇
  2023年   11篇
  2022年   36篇
  2021年   52篇
  2020年   45篇
  2019年   42篇
  2018年   47篇
  2017年   57篇
  2016年   82篇
  2015年   89篇
  2014年   86篇
  2013年   70篇
  2012年   93篇
  2011年   91篇
  2010年   98篇
  2009年   78篇
  2008年   74篇
  2007年   60篇
  2006年   41篇
  2005年   30篇
  2004年   41篇
  2003年   31篇
  2002年   23篇
  2001年   22篇
  2000年   30篇
  1999年   17篇
  1998年   18篇
  1997年   24篇
  1996年   21篇
  1995年   20篇
  1994年   22篇
  1993年   16篇
  1992年   18篇
  1991年   8篇
  1990年   16篇
  1989年   18篇
  1988年   19篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1550条查询结果,搜索用时 15 毫秒
71.
回流燃烧室流动特性试验   总被引:1,自引:0,他引:1  
为了揭示有/无燃烧状态下燃烧室热态和冷态流场的特征和流动特性,针对某型回流燃烧室单头部试验件,使用粒子图像测速仪(PIV),测量燃烧室燃烧状态下不同截面处的热态流场,以及没有燃烧状态下不同截面处的冷态流场,探讨不同总压损失系数对回流燃烧室热态/冷态流场特征及流动特性的影响。研究表明:随着总压损失系数的增大,冷态条件下各截面流场结构基本保持不变,如射流孔穿透深度、射流角度、回流区位置及大小、流线等基本保持一致,但是各位置点速度大小逐渐增大。热态条件下各截面流场随着总压损失系数增大,流场结构也基本保持不变;相同总压损失系数时,热态流场与冷态流场存在差异,燃油喷射与气流的相对运动将会对燃烧室头部的流场结构造成影响,速度较冷态流动时略微增大。   相似文献   
72.
基于Ansys Fluent的近场翼尖涡数值模拟与分析   总被引:1,自引:0,他引:1  
为了进一步研究飞机远场尾涡,提供网格分配及湍流模型的参考,并为整机模拟提供必要的参考依据,通过基于Ansys Fluent的数值模拟方法,研究了NACA0012机翼的近场翼尖涡流场,采用有限体积法求解不可压缩雷诺平均Navier-Stokes方程,其中雷诺应力项分别以S-A和Realizable k-ε模型封闭,模拟了近场翼尖涡卷起的过程,分析了机翼表面压力以及涡核参数,包括轴向涡量、涡核位置、涡核粘性等,并与风洞实验结果进行了对比。结果分析表明:基于局部O-网的六面体网格,RKE模型要优于S-A模型,与实验值更为吻合。  相似文献   
73.
为了细致捕捉直升机旋翼桨尖涡的生成和演化过程,建立了一个基于高精度网格和高阶通量计算格式的旋翼桨尖涡计算流体力学(CFD)求解方法。在该方法中,流场求解选取旋转坐标系下的Navier-Stokes方程为控制方程;空间离散采用迎风Roe格式,并采用低耗散的5阶WENO(Weighted Essentially Non-Osciltatory)格式进行对流通量的计算;时间推进则采用双时间法,在伪时间步上使用隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)推进格式;应用嵌套网格方法实现桨叶网格和背景网格的数据交换。应用所建立的方法对悬停状态的旋翼桨尖涡流场进行了高精度模拟,在桨叶网格上精细地捕捉到了桨尖涡的具体生成过程,在背景网格上捕捉到了更多圈数的桨尖涡尾迹,并对桨尖涡的演化机理进行了深入研究。结果表明:建立的高精度数值方法能够有效地对旋翼桨尖涡的生成和演化过程进行细致模拟;悬停状态下旋翼桨尖气流在上下表面压力梯度的作用下经历了边界层增厚、逐渐卷起形成涡核以及最终脱离桨叶形成桨尖涡的过程。  相似文献   
74.
涡旋电磁波的产生方式有多种,使用涡旋相位板即为其中重要的一种方式。该文对螺旋相位板产生涡旋电磁波的情况进行了仿真.通过仿真。给出了在喇叭天线口面上覆盖螺旋相位板时生成的涡旋电磁波的幅度相位分布。  相似文献   
75.
为研究不同类型燃烧室试验件熄火性能之间的关系,开展了扇形段和全环燃烧室的熄火性能试验.通过试验对比了二者熄火规律的相似性和差异性,并分析了造成差异的主要因素.以Lefebvre熄火模型为基础,结合雾化数据,拟合得到扇形段与全环燃烧室的贫油熄火经验关系式,并推算出二者熄火性能的定量换算公式.结果表明:扇形段与全环燃烧室的熄火边界变化规律类似,但在相同的工作状态条件下,全环燃烧室的贫油熄火油气比小于扇形段的相应值.  相似文献   
76.
典型工况下低排放燃烧室的压力振荡特性   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究低排放燃烧室在典型工况下的压力振荡特性,针对模型燃烧室进行了燃烧自激振荡特性试验.在试验中测量了采用贫油预混预蒸发(LPP)燃烧技术的低排放燃烧室在典型工况下的压力振荡频率和幅值,在燃烧室进口压力为1.10~2.77MPa、燃烧室进口温度为656~845 K、燃烧室压降为3.41%~4.35%范围内,分析了燃油粒径变化对振荡特性的影响.分析结果表明:局部当量比脉动是引发燃烧不稳定的因素之一.通过计算燃油二次雾化状态下的液滴最大粒径,发现燃油液滴粒径的变化对主燃级出口处的局部当量比脉动有直接影响,从而引起燃烧室压力振荡幅值和频率的变化.  相似文献   
77.
基于 LES 方法的增升装置气动噪声特性分析   总被引:3,自引:0,他引:3  
在气动噪声数值计算中,流场的求解精度对涡流扰动的细节计算以及声学的求解结果有着重要的影响。本文应用 LES 方法对增升装置的流场进行数值模拟,采用可穿透积分面的 Ffcows Wil1iams-Hawkings(FW-H)积分方法进行远场噪声计算。采用圆柱绕流算例对本文的数值计算方法进行了验证,验证结果表明:本文所使用的LES 方法能准确地捕捉到涡脱落、流动分离等非定常流动现象,可为远场气动噪声的计算提供精确的近场流动的数值解;基于 FW-H 的声类比方法能够精确高效求解远场气动噪声。在此基础上,对增升装置噪声产生的流动特性、远场特性、风速影响等进行了数值模拟研究。结果表明:缝翼产生气动噪声的主要原因是,流动在缝翼和主翼之间的凹槽形成的不稳定波以及缝翼钝后缘的小脱落涡;襟翼产生气动噪声的主要原因是,襟翼附近由于流动分离产生的高频的小尺度不稳定涡和低频的大尺度涡。  相似文献   
78.
为了研究空气流量分配对驻涡燃烧室对排放特性的影响,了解对驻涡燃烧室内污染物生成的过程及其影响因素,设计了一个能够改变中心钝体宽度、仅凹腔供油的驻涡燃烧室.在常压下对该驻涡燃烧室进行了排放特性试验,进口温度保持200℃.试验中,燃烧室进口马赫数为0.15~0.3.影响排放的因素主要包括雾化质量、凹腔当量比以及与进口马赫数相关的驻留时间等.总体来说雾化质量、凹腔当量比的提高对降低CO和HC的排放是有利的,但是这会使NOx排放增加.在低凹腔当量比时,CO排放曲线变化下降比较平缓,甚至出现上升趋势,而HC排放曲线比较陡峭.这是由于HC的消耗速度比CO消耗速度快,随着凹腔当量比的增加,供油压力提高,燃油雾化粒径变小,燃油蒸发时间缩短,使HC排放快速减少,中间产物CO大量产生而来不及消耗.凹腔当量比进一步上升时,由于燃烧温度的提高,使得CO排放快速减少.在燃烧室内燃烧过程中,NOx的形成和消耗是非常复杂的过程,目前只能作一些定性的分析,而CO和HC的反应过程相对简单.通过对不同钝体槽宽下,具有相似凹腔前壁流量的工况的比较,发现CO和HC的形成主要受凹腔内工作状况影响,而NOx的形成过程更复杂,主流也对其产生着重要的影响.   相似文献   
79.
为研究固体燃料超燃冲压发动机进气道与燃烧室的匹配特性,以飞行马赫数为6、飞行高度为25km为设计点对发动机各部件进行初步设计,采用数值模拟方法计算了一系列具有不同进气道内收缩比的发动机模型.结果表明:在保持燃烧室结构不变的条件下,发动机推力与比冲随进气道内压缩比增大开始显著下降,随后小幅上升;在保持燃烧室入口面积扩张比不变的条件下,发动机总体性能随进气道内收缩比的增大而提高.在满足进气道起动与燃烧室火焰稳定的前提下,发动机设计应采用尽可能大的进气道内收缩比与尽可能小的燃烧室入口面积扩张比.   相似文献   
80.
采用大涡模拟与声类比的方法研究了尾缘锯齿对涡轮叶栅噪声的影响.设计了两种不同的尾缘锯齿,对比了Re=3.3×105(基于叶片弦长与叶栅出口速度)下两种不同结构锯齿尾缘叶栅与直尾缘叶栅的声功率.结果表明:尾缘锯齿可以降低叶片吸力面边界层分离噪声约5dB,降低尾缘涡脱落噪声约10dB.进一步的研究表明,尾缘锯齿可以降低叶片尾缘附近表面的压力脉动幅值约50%,将展向相关尺度较大的涡破碎成展向相关尺度较小的涡,并消除尾缘脱落涡,这三者的综合作用使噪声得到降低.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号