首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   15篇
  国内免费   7篇
航空   52篇
航天技术   24篇
综合类   2篇
航天   14篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1987年   1篇
排序方式: 共有92条查询结果,搜索用时 406 毫秒
81.
82.
Based on the author’s previous research, a novel hybrid grid generation technique is developed by introducing an Artificial Neural Network(ANN) approach for realistic viscous flow simulations. An initial hybrid grid over a typical geometry with anisotropic quadrilaterals in the boundary layer and isotropic triangles in the off-body region is generated by the classical mesh generation method to train two ANNs on how to predict the advancing direction of the new point and to control the grid size....  相似文献   
83.
As a data-driven approach, Deep Learning(DL)-based fault diagnosis methods need to collect the relatively comprehensive data on machine fault types to achieve satisfactory performance. A mechanical system may include multiple submachines in the real-world. During condition monitoring of a mechanical system, fault data are distributed in a continuous flow of constantly generated information and new faults will inevitably occur in unconsidered submachines, which are also called machine increments....  相似文献   
84.
In recent years, deep learning (DL) methods have proven their efficiency for various computer vision (CV) tasks such as image classification, natural language processing, and object detection. However, training a DL model is expensive in terms of both complexities of the network structure and the amount of labeled data needed. In addition, the imbalance among available labeled data for different classes of interest may also adversely affect the model accuracy. This paper addresses these issues using a new convolutional neural network (CNN) based architecture. The proposed network incorporates both spatial and spectral information that combines two sub-networks: spatial-CNN and spectral-CNN. The spectral-CNN extracts spectral information, while spatial-CNN captures spatial information. Moreover, to make the features more robust, a multiscale spatial CNN architecture is introduced using different kernels. The final feature vector is formed by concatenating the outputs obtained from both spatial-CNN and spectral-CNN. To address the data imbalance problem, a generative adversarial network (GAN) was used to generate data for the underrepresented class. Finally, relatively a shallower network architecture was used to reduce the number of parameters in the network and improve the processing speed. The proposed model was trained and tested on Senitel-2 images for the classification of the debris-covered glacier. The results showed that the proposed method is well-suited for mapping and monitoring debris-covered glaciers at a large scale with high classification accuracy. In addition, we compared the proposed method with conventional machine learning approaches, support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP).  相似文献   
85.
In terms of multiple temporal and spatial scales, massive data from experiments, flow field measurements, and high-fidelity numerical simulations have greatly promoted the rapid development of fluid mechanics. Machine Learning(ML) provides a wealth of analysis methods to extract potential information from a large amount of data for in-depth understanding of the underlying flow mechanism or for further applications. Furthermore, machine learning algorithms can enhance flow information and automat...  相似文献   
86.
《中国航空学报》2023,36(8):422-453
An on-machine measuring (OMM) system with a laser displacement sensor (LDS) is designed for measuring free-form surfaces of hypersonic aircraft’s radomes. To improve the measurement accuracy of the OMM system, a novel Iteratively Automatic machine learning Boosted hand-eye Calibration (IABC) method is proposed. Both the hand-eye relationship and LDS measurement errors can be calibrated in one calibration process without any hardware changes via IABC. Firstly, a new objective function is derived, containing analytical parameters of the hand-eye relationship and LDS errors. Then, a hybrid calibration model composed of two kernels is proposed to solve the objective function. One kernel is the analytical kernel designed for solving analytical parameters. Another kernel is the automatic machine learning (AutoML) kernel designed to model LDS errors. The two kernels are connected with stepwise iterations to find the best calibration results. Compared with traditional methods, hand-eye experiments show that IABC reduces the calibration RMSE by about 50%. Verification experiments show that IABC reduces the measurement deviations by about 25%-50% and RMSEs within 40%. Even when the training data are obviously less than the test data, IABC performs well. Experiments demonstrate that IABC is more accurate than traditional hand-eye methods.  相似文献   
87.
陈静  宫黎明 《遥测遥控》2022,43(6):124-135
机器视觉技术凭借其非接触测量、实时性好、可持续工作等优点,在军事领域中有着广阔的应用前景。在对机器视觉光学照明系统、成像系统、视觉信息处理系统等关键技术进行概述的基础上,详细分析了机器视觉技术在军事领域进行典型目标物识别、人员识别、装备缺陷检测等典型场景以及典型军事装备上的应用现状。在此基础上,指出了机器视觉在军事领域的应用,仍然存在视觉传感器硬件系统难以适应极端环境、复杂的军事目标适应性不足、目标识别的实时性难以保证、多传感器融合获取军事目标信息能力缺乏等问题。同时,对机器视觉技术在军事领域应用的未来发展趋势进行了展望,研究分析结果可为机器视觉在军事领域的进一步实用化提供参考。  相似文献   
88.
搅拌摩擦焊常采用无坡口焊缝,焊缝装配质量对搅拌摩擦焊装配质量影响较大,通过焊缝的特征,可以对搅拌摩擦焊缝的装配质量进行评判。线结构光是提取焊缝特征的常用手段,基于结构光传感器扫描获得的焊缝轮廓信息多通过离散的点进行表示,如何高效地从轮廓点中提取焊缝轮廓信息,是焊缝特征识别的新挑战。本文提出一种基于机器视觉的焊缝装配质量评测方法,将离散的轮廓点转换为位图,通过抗锯齿算法提高轮廓直线特征的识别可靠性,并计算对应焊缝的装配质量信息,进而实现对整条焊缝的装配质量的量化评价。与传统的离散点拟合方法相比,本方法具有较为明显的效率优势。  相似文献   
89.
In this paper, we implement the AdaBoost algorithm to optimize the classifications results of precipitations intensities carried out by One versus All strategy using Support Vector Machine (OvA-SVM). The model developed which combines the AdaBoost algorithm with a multiclass SVM is applied to images from the MSG (Meteosat Second Generation) satellite. Other variants to build multiclass SVMs, such as the OvO-SVM (One versus One SVM), SBT-SVM (Slant Binary Tree SVM) and DDAG-SVM (Decision Directed Acyclic Graph) are also implemented on which we tested the AdaBoost algorithm. The study showed that the AdaBoost algorithm performed better in the case of the OvA-SVM variant compared to the other variants.In order to evaluate the elaborated model, some classification techniques, such as the ECST Enhanced Convective Stratiform Technique (ECST), the SART where the Support vector machine, Artificial neural network and Random forest classifiers are combined, the Convective/Stratiform Rain Area Delineation Technique (CS-RADT) and the Random Forest technique (RFT) are applied. The classification results obtained show that AdaBoost with OvA-SVM (AdaOvA-SVM) presents very interesting performances where the evaluation parameters POD, POFD, FAR, BIAS, CSI and PC indicate the values 95.2%, 12.4%, 14.7%, 0.9, 88.1% and 96.5% respectively. Indeed, the AdaOvA-SVM technique has surpassed the CS-RADT, ECST and RFT techniques. As for the comparison with the SART, we noted that OvA-SVM presents very close results. The same trend was also observed when estimating precipitation. At the end of this study, it is shown that the AdaBoost algorithm performs better on a weak classifier or on a strong classifier operating in an unfavorable environment.  相似文献   
90.
《中国航空学报》2023,36(2):213-228
Motor drives form an essential part of the electric compressors, pumps, braking and actuation systems in the More-Electric Aircraft (MEA). In this paper, the application of Machine Learning (ML) in motor-drive design and optimization process is investigated. The general idea of using ML is to train surrogate models for the optimization. This training process is based on sample data collected from detailed simulation or experiment of motor drives. However, the Surrogate Role (SR) of ML may vary for different applications. This paper first introduces the principles of ML and then proposes two SRs (direct mapping approach and correction approach) of the ML in a motor-drive optimization process. Two different cases are given for the method comparison and validation of ML SRs. The first case is using the sample data from experiments to train the ML surrogate models. For the second case, the joint-simulation data is utilized for a multi-objective motor-drive optimization problem. It is found that both surrogate roles of ML can provide a good mapping model for the cases and in the second case, three feasible design schemes of ML are proposed and validated for the two SRs. Regarding the time consumption in optimizaiton, the proposed ML models can give one motor-drive design point up to 0.044 s while it takes more than 1.5 mins for the used simulation-based models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号