首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   13篇
  国内免费   14篇
航空   75篇
航天技术   91篇
综合类   3篇
航天   14篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   10篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   7篇
  2012年   9篇
  2011年   8篇
  2010年   16篇
  2009年   9篇
  2008年   13篇
  2007年   10篇
  2006年   9篇
  2005年   15篇
  2004年   4篇
  2003年   10篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   9篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1984年   1篇
排序方式: 共有183条查询结果,搜索用时 735 毫秒
71.
制作了试验用的大型导弹发动机推进剂模块,选用了9MeV的电子加速器作为实验用的高能射线源,设计了推进剂半值层的试验方案,根据不同的推进剂的厚度,取得了相应的试验结果,通过分析得到科学的结论。  相似文献   
72.
通过偶极子场和六极子场适当叠加,改进猜解磁场,使猜解磁场在太阳南北极符号相反,然后采用理想磁流体力学方程组(MHD),由猜解磁场与太阳风流动相互作用计算出稳态自洽解,得到定性上与观测比较接近的具有两个冕流的背景结构.在两个冕流间采用具有同心圆磁场位形的触发模型触发CME事件,研究CME的日冕传播特征.模拟结果表明,CME被约束在两冕流间传播,CME闭磁场位形和磁云横截面磁场位形相似,可以解释1AU处观测磁云的部分特征;在CME附近,存在压力和Lorentz力起主要作用的区域,这可以为分析1AU处CME事件的观测数据提供帮助.  相似文献   
73.
首先讨论了磁流波传播的线性特征,然后构造了球坐标中-自治的非等温,非均匀等离子体初态,应用二维时变可压缩磁流体动力学模拟,数值研究了色球层底部压力脉冲所引起扰动的全球传播过程,结果表明,在极区,压力脉冲导致的扰动传播可以区分成两类不同模式的波动,快磁声波与慢磁声波,而在赤道附近,传播扰动是快模磁声波,在源区附近还存在一非传播的扰动,模拟结果的特征有助于解释SOHO/EIT观测到的波动事件。  相似文献   
74.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
75.
We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad–Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube.  相似文献   
76.
本文讨论磁流体中间激波的相互作用规律.主要结论:中间激波汇合的产物为后向快简单波、后向慢简单波或慢激波、接触间断、前向慢激波和前向快激波,其中后向波成份和接触间断很弱.当左(右)激波较强时,中国激波碰撞产物为后(前)向快激波、后(前)向慢简单波或慢激波、负(正)切向间断、前(后)向慢简单波和前(后)向快激波.  相似文献   
77.
Transients in the heliosphere, including coronal mass ejections (CMEs) and corotating interaction regions can be imaged to large heliocentric distances by heliospheric imagers (HIs), such as the HIs onboard STEREO and SMEI onboard Coriolis. These observations can be analyzed using different techniques to derive the CME speed and direction. In this paper, we use a three-dimensional (3-D) magneto-hydrodynamic (MHD) numerical simulation to investigate one of these methods, the fitting method of  and . Because we use a 3-D simulation, we can determine with great accuracy the CME initial speed, its speed at 1 AU and its average transit speed as well as its size and direction of propagation. We are able to compare the results of the fitting method with the values from the simulation for different viewing angles between the CME direction of propagation and the Sun-spacecraft line. We focus on one simulation of a wide (120–140°) CME, whose initial speed is about 800 km s−1. For this case, we find that the best-fit speed is in good agreement with the speed of the CME at 1 AU, and this, independently of the viewing angle. The fitted direction of propagation is not in good agreement with the viewing angle in the simulation, although smaller viewing angles result in smaller fitted directions. This is due to the extremely wide nature of the ejection. A new fitting method, proposed to take into account the CME width, results in better agreement between fitted and actual directions for directions close to the Sun–Earth line. For other directions, it gives results comparable to the fitting method of Sheeley et al. (1999). The CME deceleration has only a small effect on the fitted direction, resulting in fitted values about 1–4° higher than the actual values.  相似文献   
78.
In previous publications (Keppens et al.: 2002, Astrophys. J. 569, L121; Goedbloed et al.: 2004a, Phys. Plasmas 11, 28), we have demonstrated that stationary rotation of magnetized plasma about a compact central object permits an enormous number of different MHD instabilities, with the well-known magneto-rotational instability (Velikhov, E. P.: 1959, Soviet Phys.–JETP Lett. 36, 995; Chandrasekhar, S.: 1960, Proc. Natl. Acad. Sci. U.S.A. 46, 253; Balbus, S. A. and Hawley, J. F.: 1991, Astrophys. J. 376, 214) as just one of them. We here concentrate on the new instabilities found that are driven by transonic transitions of the poloidal flow. A particularly promising class of instabilities, from the point of view of MHD turbulence in accretion disks, is the class of trans-slow Alfv’en continuum modes, that occur when the poloidal flow exceeds a critical value of the slow magnetosonic speed. When this happens, virtually every magnetic/flow surface of the disk becomes unstable with respect to highly localized modes of the continuous spectrum. The mode structures rotate, in turn, about the rotating disk. These structures lock and become explosively unstable when the mass of the central object is increased beyond a certain critical value. Their growth rates then become huge, of the order of the Alfv’en transit time. These instabilities appear to have all requisite properties to facilitate accretion flows across magnetic surfaces and jet formation.  相似文献   
79.
Soft X-ray (SXR) waves, EIT waves, and Hα Moreton waves are all associated with coronal mass ejections (CMEs). The knowledge of the characteristics about these waves is crucial for the understanding of CMEs, and hence for the space weather researches. MHD numerical simulation is performed, with the consideration of the quiet Sun atmosphere, to investigate the CME/flare processes. On the basis of the numerical results, SXR, EUV, and Hα images of the eruption are synthesized, where SXR waves, EIT waves, and Hα Moreton waves are identified. It confirms that the EIT waves, which border the expanding dimmming region, are produced by the successive opening (or stretching) of the closed magnetic field lines. Hα Moreton waves are found to propagate outward synchronously with the SXR waves, lagging behind the latter spatially by ~27 Mm in the simulated scenario. However, the EIT wave velocity is only a third of the Moreton wave velocity. The synthesized results also suggest that Hα± 0.45Å would be the best off-band for the detection of Hα Moreton waves.  相似文献   
80.
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号