全文获取类型
收费全文 | 144篇 |
免费 | 15篇 |
国内免费 | 8篇 |
专业分类
航空 | 61篇 |
航天技术 | 102篇 |
综合类 | 1篇 |
航天 | 3篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 9篇 |
2017年 | 4篇 |
2015年 | 6篇 |
2014年 | 3篇 |
2013年 | 8篇 |
2012年 | 9篇 |
2011年 | 7篇 |
2010年 | 13篇 |
2009年 | 8篇 |
2008年 | 13篇 |
2007年 | 8篇 |
2006年 | 6篇 |
2005年 | 15篇 |
2004年 | 2篇 |
2003年 | 10篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 9篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有167条查询结果,搜索用时 15 毫秒
81.
Energy must be continually supplied to the solar corona to maintain both its average temperature and its high energy manifestations. The energy is supplied by photospheric motions and the magnetic field acts both to transmit this energy to the corona and as the furnace in which the energy is stored. The means by which the energy is dissipated and transformed into the actual forms we observe is the activation of current sheets. We conjecture here the properties of such current sheets as derived by both energetical arguments and numerical evidence of the self-organization of a system of currents in a highly turbulent medium. The consequences of the appearance of spatial and temporal intermittency on the different aspects of solar acitvity are also discussed. 相似文献
82.
针对理想MHD方程,提出了一种新的基于MacCormack算法的雅可比矩阵分裂方法,克服了原有方法稳定性差的问题,并成功地应用于理想MHD方程的求解.控制方程在非结构混合网格上进行空间离散,其中对流项采用本文发展的逆风向量分裂格式,并引入了双曲型磁场散度清除技术,时间推进为显式5步龙格-库塔方法.对MHD激波管流动和带均匀磁场干扰的二维高超声速钝头体绕流流场进行了数值模拟,得到了与参考文献相吻合的数值结果,表明本文发展的数值分裂方法可以有效地捕捉MHD流场的流动特征,并且具有比MacCormack方法更高的稳定性和计算精度. 相似文献
83.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere
and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field
lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably
the cause of the observed extremely low values of the Ne/Mg abundance ratio.
In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential
magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary
of these dense structures must be considered.
In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting
components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations
and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
84.
In previous publications (Keppens et al.: 2002, Astrophys. J. 569, L121; Goedbloed et al.: 2004a, Phys. Plasmas
11, 28), we have demonstrated that stationary rotation of magnetized plasma about a compact central object permits an enormous
number of different MHD instabilities, with the well-known magneto-rotational instability (Velikhov, E. P.: 1959, Soviet Phys.–JETP Lett. 36, 995; Chandrasekhar, S.: 1960, Proc. Natl. Acad. Sci. U.S.A. 46, 253; Balbus, S. A. and Hawley, J. F.: 1991, Astrophys. J. 376, 214) as just one of them. We here concentrate on the new instabilities found that are driven by transonic transitions of
the poloidal flow. A particularly promising class of instabilities, from the point of view of MHD turbulence in accretion
disks, is the class of trans-slow Alfv’en continuum modes, that occur when the poloidal flow exceeds a critical value of the slow magnetosonic speed. When this happens, virtually
every magnetic/flow surface of the disk becomes unstable with respect to highly localized modes of the continuous spectrum.
The mode structures rotate, in turn, about the rotating disk. These structures lock and become explosively unstable when the
mass of the central object is increased beyond a certain critical value. Their growth rates then become huge, of the order
of the Alfv’en transit time. These instabilities appear to have all requisite properties to facilitate accretion flows across
magnetic surfaces and jet formation. 相似文献
85.
Hongang Yang Shuping Jin Chaoxu Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1649-1657
An uniform out-of-plane magnetic field component By0 is added to the equilibrium Harris sheet with plasma β = 0.5 and Lc = 0.5di (where Lc is the half-width of the equilibrium current layer and di is the ion inertial length). Driven by the continuous boundary inflows, the magnetic reconnections with the guide field By0/B0 ranging from 0 to 4.0 are investigated using a 2.5D Hall magnetohydro-dynamic (MHD) code developed from a multi-step implicit scheme. The features of the reconnection field are substantially altered in the presence of the guide field. The openness of the magnetic separatrix angle is slightly reduced and the anti-symmetric quadrupolar structure of By field and the symmetric distribution of plasma pressure P are replaced by an asymmetric By four-wing structure and an asymmetric P plot as a non-zero By0 is added. The decoupling of electrons and ions also occurs near the X line in the case with a finite By0, but the effect of initial By0 on the electron flow is greater than that on the ion flow. The reconnection rates at the X-line drops from 0.151 to 0.06, namely, ∂A/∂t is reduced by a factor of 2.5 as By0/B0 increases from 0 to 4.0. The reduction of reconnection rate might be related to the reducing openness of reconnection layer with the increasing By0. 相似文献
86.
A.M. Gulisano S. Dasso C.H. Mandrini P. Dmoulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1881-1890
Magnetic clouds (MCs) are highly magnetized plasma structures that have a low proton temperature and a magnetic field vector that rotates when seen by a heliospheric observer. More than 25 years of observations of magnetic and plasma properties of MCs at 1 AU have provided significant knowledge of their magnetic structure. However, because in situ observations only give information along the trajectory of the spacecraft, their real 3D magnetic configuration remains still partially unknown. We generate a set of synthetic clouds, exploring the space of parameters that represents the possible orientations and minimum distances of the satellite trajectory to the cloud axis, p. The synthetic clouds have a local cylindrical symmetry and a linear force-free magnetic configuration. From the analysis of synthetic clouds, we quantify the errors introduced in the determination of the orientation/size (and, consequently, of the global magnetohydrodynamic quantities) by the Minimum Variance method when p is not zero. 相似文献
87.
The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice. To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m) and energy(E) levels, the transient Magneto Hydro Dynamics(MHD) method,completed by high temperature thermodynamic and transport, and plasma electrical models, is developed to study argon plasma response under the excitation of current of high rise rate. By calculating the two-dimensional expans... 相似文献
88.
通过偶极子场和六极子场适当叠加,改进猜解磁场,使猜解磁场在太阳南北极符号相反,然后采用理想磁流体力学方程组(MHD),由猜解磁场与太阳风流动相互作用计算出稳态自洽解,得到定性上与观测比较接近的具有两个冕流的背景结构.在两个冕流间采用具有同心圆磁场位形的触发模型触发CME事件,研究CME的日冕传播特征.模拟结果表明,CME被约束在两冕流间传播,CME闭磁场位形和磁云横截面磁场位形相似,可以解释1AU处观测磁云的部分特征;在CME附近,存在压力和Lorentz力起主要作用的区域,这可以为分析1AU处CME事件的观测数据提供帮助. 相似文献
89.
Suess S. T. Phillips J. L. McComas D. J. Goldstein B. E. Neugebauer M. Nerney S. 《Space Science Reviews》1998,83(1-2):75-86
The solar wind in the inner heliosphere, inside ~ 5 AU, has been almost fully characterized by the addition of the high heliographic latitude Ulysses mission to the many low latitude inner heliosphere missions that preceded it. The two major omissions are the high latitude solar wind at solar maximum, which will be measured during the second Ulysses polar passages, and the solar wind near the Sun, which could be analyzed by a Solar Probe mission. Here, existing knowledge of the global solar wind in the inner heliosphere is summarized in the context of the new results from Ulysses. 相似文献
90.
B. Van der Holst S. Poedts E. Chané C. Jacobs G. Dubey D. Kimpe 《Space Science Reviews》2005,121(1-4):91-104
Simulations of coronal mass ejections (CMEs) evolving in the interplanetary (IP) space from the Sun up to 1 AU are performed
in the framework of ideal magnetohydrodynamics (MHD) by the means of a finite-volume, explicit solver. The aim is to quantify
the effect of the background solar wind and of the CME initiation parameters, such as the initial magnetic polarity, on the
evolution and on the geo-effectiveness of CMEs. First, three different solar wind models are reconstructed using the same
numerical grid and the same numerical scheme. Then, different CME initiation models are considered: Magnetic foot point shearing
and magnetic flux emergence. For the fast CME evolution studies, a very simple CME model is considered: A high-density and
high-pressure magnetized plasma blob is superposed on a background steady state solar wind model with an initial velocity
and launch direction. The simulations show that the initial magnetic polarity substantially affects the IP evolution of the
CMEs influencing the propagation velocity, the shape, the trajectory (and thus, the geo-effectiveness). 相似文献