首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   879篇
  免费   123篇
  国内免费   128篇
航空   377篇
航天技术   395篇
综合类   63篇
航天   295篇
  2024年   3篇
  2023年   19篇
  2022年   19篇
  2021年   30篇
  2020年   40篇
  2019年   48篇
  2018年   36篇
  2017年   30篇
  2016年   23篇
  2015年   31篇
  2014年   55篇
  2013年   72篇
  2012年   54篇
  2011年   82篇
  2010年   71篇
  2009年   69篇
  2008年   43篇
  2007年   60篇
  2006年   51篇
  2005年   49篇
  2004年   35篇
  2003年   37篇
  2002年   33篇
  2001年   36篇
  2000年   18篇
  1999年   18篇
  1998年   24篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
排序方式: 共有1130条查询结果,搜索用时 109 毫秒
931.
The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.  相似文献   
932.
The devastating Sumatra tsunami in 2004 demonstrated the need for a tsunami early warning system in the Indian Ocean. Such a system has been installed within the German-Indonesian Tsunami Early Warning System (GITEWS) project. Tsunamis are a global phenomenon and for global observations satellites are predestined. Within the GITEWS project a feasibility study on a future tsunami detection system from space has therefore been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using GNSS signals for remote sensing. It uses ocean reflected GNSS signals for sea surface altimetry. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R receivers, densely spaced sea surface height measurements could be established to detect tsunamis. Some general considerations on the geometry between LEO and GNSS are made in this simulation study. It exemplary analyzes the detection performance of a GNSS-R constellation at 900 km altitude and 60° inclination angle when applied to the Sumatra tsunami as it occurred in 2004. GPS is assumed as signal source and the combination with GLONASS and Galileo signals is investigated. It can be demonstrated, that the combination of GPS and Galileo is advantageous for constellations with few satellites while the combination with GLONASS is preferable for constellations with many satellites. If all three GNSS are combined, the best detection performance can be expected for all scenarios considered. In this case an 18 satellite constellation will detect the Sumatra tsunami within 17 min with certainty, while it takes 53 min if only GPS is considered.  相似文献   
933.
The global positioning system (GPS) has become an essential tool for the high precision navigation and positioning. The quality of GPS positioning results mainly depends on the model’s formulations regarding GPS observations, including both a functional model, which describes the mathematical relationships between the GPS measurements and unknown parameters, and a stochastic model, which reflects the physical properties of the measurements. Over the past two decades, the functional models for GPS measurements have been investigated in considerable detail. However, the stochastic models of GPS observation data are simplified, assuming that all the GPS measurements have the same variance and are statistically independent. Such assumptions are unrealistic. Although a few studies of GPS stochastic models were performed, they are restricted to short baselines and short time session lengths. In this paper, the stochastic modeling for GPS long-baseline and zenith tropospheric delay (ZTD) estimates with a 24-h session is investigated using the residual-based and standard stochastic models. Results show that using the different stochastic modelling methods, the total differences can reach as much as 3–6 mm in the baseline component, especially in the height component, and 10 mm in the ZTD estimation. Any misspecification in the stochastic models will result in unreliable GPS baseline and ZTD estimations. Using the residual-based stochastic model, not only the precision of GPS baseline and ZTD estimation is obviously improved, but also the baseline and ZTD estimations are closer to the reference value.  相似文献   
934.
The ionosphere is a dispersive medium for radio waves with the refractive index which is a function of frequency and total electron content (TEC). TEC has a strong diurnal variation in addition to monthly, seasonal and solar cycle variations and small and large scale irregularities. Dual frequency GPS observations can be utilized to obtain TEC and investigate its spatial and temporal variations. We here studied short term TEC variations over the Kingdom of Saudi Arabia (KSA). A regional GPS network is formed consisting of 16 sites in and around KSA. GPS observations, acquired between 1st and 11th February 2009, were processed on a daily basis by using the Bernese v5.0 software and IGS final products. The geometry-free zero difference smoothed code observables were used to obtain two hour interval snapshots of TEC and their RMS errors at 0.5 × 0.5 degree grid nodes and regional ionosphere models in a spherical harmonics expansion to degree and order six. The equatorial ionized anomaly (EIA) is recovered in the south of 20°N from 08:00 to 12:00 UT. We found that day-by-day TEC variation is more stable than the night time variation.  相似文献   
935.
Equatorial spread-F is a common occurrence in the equatorial ionosphere that is associated with large variations in plasma density that often cause scintillation and interference in communication signals. These events are known to result from Rayleigh–Taylor instability, but the day-to-day variability of their occurrence is not well understood. The triggering mechanism of plasma depletions is still a matter of debate, but may be linked to gravity waves that under favorable conditions propagate to the middle atmosphere. Understanding the triggering of ESF was the focus of the SpreadFEx campaign near Brasilia, Brazil in 2005. The campaign provided co-located airglow and GPS observations to study the onset of plasma depletions and their evolution as they traversed the region. Comparisons between the 630.0 nm airglow data and GPS data demonstrate the ability of the compact dual frequency GPS array to detect the plasma bubbles and retrieve reliable propagation characteristics of the depletions. In this case study, a plasma depletion was detected and moved over the array at velocities of 85–110 m/s, slowing as it moved towards the east. Correlation of consecutive airglow images gives consistent estimates of the eastward drift over the same time period. Mapping the airglow data to the GPS line-of-sight geometry allows direct comparison and reveals a resolvable westward tilt of the plasma depletion that may be due to vertical shear. The uniqueness of this study is the ability to resolve locally the characteristics of the plasma depletion without relying on assumptions about the mapping of the depletion along magnetic field lines to large latitudinal distances. It presents new information for understanding ESF development and the development of depletions strong enough to produce scintillation.  相似文献   
936.
Geodetic time and frequency transfer (TFT) consists in a comprehensive modeling of code and carrier phase observations from Global Navigation Satellite System (GNSS) in order to determine the synchronization errors between two remote clocks connected to GNSS receivers. Using either common view (CV), or Precise Point Positioning (PPP), current GNSS time transfer uses only GPS measurements. This study combines GPS and GLONASS observations in geodetic TFT in order to determine the added value of the GLONASS data in the results. Using the software Atomium, we demonstrate on one hand that using both constellations improves the solution for both CV and PPP results when analysing short data batches. In that case, there are not enough GPS code data to calibrate the solution, and additional GLONASS code data allows us to retrieve a correct absolute value for the solution. On the other hand, the CV results of frequency transfer are not significantly affected by adding GLONASS data, while in PPP the combination with GLONASS modifies the frequency transfer results, and in particular the daily frequency offset, with maximum differences of 150 ps between the TFT solutions obtained with GPS-only or GPS + GLONASS.  相似文献   
937.
In this paper, first results from a national Global Positioning System (GPS) based total electron content (TEC) prediction model over South Africa are presented. Data for 10 GPS receiver stations distributed through out the country were used to train a feed forward neural network (NN) over an interval of at most five years. In the NN training, validating and testing processes, five factors which are well known to influence TEC variability namely diurnal variation, seasonal variation, magnetic activity, solar activity and the geographic position of the GPS receivers were included in the NN model. The database consisted of 1-min data and therefore the NN model developed can be used to forecast TEC values 1 min in advance. Results from the NN national model (NM) were compared with hourly TEC values generated by the earlier developed NN single station models (SSMs) at Sutherland (32.38°S, 20.81°E) and Springbok (29.67°S, 17.88°E), to predict TEC variations over the Cape Town (33.95°S, 18.47°E) and Upington (28.41°S, 21.26°E) stations, respectively, during equinoxes and solstices. This revealed that, on average, the NM led to an improvement in TEC prediction accuracy compared to the SSMs for the considered testing periods.  相似文献   
938.
The DORIS instrument on Jason-2 is the first of a new generation. The satellite receivers have now seven simultaneous measurement channels, with synchronous dual frequency phase and pseudo-range measurements. These measurements are now described in a similar manner as GPS measurements and an extension of the RINEX 3.0 format has been defined for DORIS. Data are available to users with a shorter latency.  相似文献   
939.
940.
An attitude determination and control system (ADCS) is critical to satellite attitude maneuvers and to the coordinate transformation from the inertial frame to the spacecraft frame. This paper shows specific sensors in the ADCS of the satellite mission FORMOSAT-3/COSMIC (F3/C) and the impact of the ADCS quality on orbit accuracy. The selection of main POD antenna depends on the beta angles of the different F3/C satellites (for FM2 and FM4) during the inflight phase. In particular, under the eclipse, alternative attitude sensors are activated to replace the Sun sensors, and such a sensor change leads to anomalous GPS phase residuals and a degraded orbit accuracy. Since the nominal attitude serves as a reference for ADCS, the 3-dimensional attitude-induced errors in reduced dynamic orbits over selected days in 2010 show 9.35, 10.78, 4.97, 5.48, 7.18, and 6.89 cm for FM1–FM6. Besides, the 3-dimensional velocity errors induced by the attitude effect are 0.10, 0.10, 0.07, 0.08, 0.09, and 0.10 for FM1–FM6. We analyze the quality of the observed attitude transformation matrix of F3/C and its impact on kinematic orbit determination. With 249 days of GPS in 2008, the analysis leads to the following averaged 3-dimensional attitude-induced orbit errors: 2.72, 2.62, 2.37, 1.90, 1.70, and 1.99 cm for satellites FM1–FM6. Critical suggestions of geodetic payloads for the follow-on mission of F3/C are presented based on the current result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号