首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   91篇
  国内免费   59篇
航空   394篇
航天技术   28篇
综合类   64篇
航天   44篇
  2024年   5篇
  2023年   11篇
  2022年   15篇
  2021年   17篇
  2020年   27篇
  2019年   19篇
  2018年   13篇
  2017年   13篇
  2016年   21篇
  2015年   26篇
  2014年   19篇
  2013年   21篇
  2012年   23篇
  2011年   18篇
  2010年   15篇
  2009年   30篇
  2008年   18篇
  2007年   17篇
  2006年   21篇
  2005年   14篇
  2004年   14篇
  2003年   14篇
  2002年   12篇
  2001年   16篇
  2000年   11篇
  1999年   10篇
  1998年   3篇
  1997年   13篇
  1996年   12篇
  1995年   10篇
  1994年   8篇
  1993年   13篇
  1992年   5篇
  1991年   8篇
  1990年   8篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有530条查询结果,搜索用时 31 毫秒
521.
针对排气道声衬应用环境,提出了一种适用于短舱排气道声衬的声学设计方法,利用有限元方法建立了排气道声衬声阻抗参数优化模型,根据设计工况和结构约束条件,设计并制备了一套全尺寸排气道内壁声衬试验件。为了验证排气声衬的声学设计方法,研发了频率范围500~16 000 Hz、最大周向15阶模态的全尺寸声衬声学试验平台用以模拟风扇后传噪声特征,分别进行了声衬条件和固壁条件下辐射声场3 m和5 m处的指向性测试,获取了500~1 500 Hz频率范围内的降噪量,试验结果表明设计声衬在950、1 000 Hz频率点的降噪效果最优,充分验证了声衬设计的准确性。分析了设计工况下的声衬在3 m和5 m处辐射声场指向性的声压级分布,试验结果表明0°~90°范围内的最大降噪量分别为10.44 dB和7.21 dB。提出的排气道声衬声学设计与验证方法可为发动机短舱排气道声衬设计与验证提供重要技术支撑。  相似文献   
522.
声学黑洞(ABH)作为一种新型波操控技术,通过裁剪结构厚度以实现波能量的聚集与耗散,在工程结构的减振降噪、能量回收等方面具有很好的应用前景。碳纤维复合材料(CFRP)具有质量轻、高比强度和比模量的特点,广泛应用于航空工程结构中。为了探究复合材料结构中的ABH效应,本文针对内嵌式的碳纤维复合材料ABH薄板结构(CFRP-ABH),利用有限元方法验证了其能量聚集效应,并探究了铺层角度对能量聚集效应的影响。另外,通过仿真计算和实验测试,研究分析了CFRP-ABH结构的动力学特性。结果表明,在200~3 000 Hz的频率范围内,CFRP-ABH结构的振动水平相对于均匀厚度板有5~18 dB的降低,表现出优秀的宽频减振性能。  相似文献   
523.
共轴对转螺旋桨由于拉力大、气动效率高而备受人们的关注。本文从共轴对转螺旋桨的试验研究、气动性能评估、气动模拟、气动噪声预测、气动噪声优化设计等方面进行了综述。首先,总结了目前国内外在共轴对转螺旋桨气动及噪声方面的试验成果;随后,介绍了共轴对转螺旋桨气动力计算的工程方法,并详细阐述了北京航空航天大学陆士嘉实验室提出的共轴对转螺旋桨气动力评估的片条理论发展与参数选择;然后,介绍了共轴对转螺旋桨数值模拟方法,并针对共轴对转螺旋桨气动噪声预测的频域方法和时域方法进行了论述;最后,介绍了目前共轴对转螺旋桨气动噪声优化设计的研究成果。  相似文献   
524.
由低成本微惯性测量单元(MIMU)和里程轮组合的管道定位系统在里程轮出现打滑情况下,组合定位误差将快速发散。为解决里程轮打滑时量测信息失效的问题,采用光电测速传感器作为冗余测速传感器,利用联邦滤波对MIMU、里程轮和光电测速传感器多源信息进行融合,并基于预测残差设计了自适应信息分配因子,实现了不同特性传感器的最优融合。仿真实验结果表明,提出的多传感器管道定位方法可以降低里程轮打滑导致的管道定位误差,对于120m长的仿真管道,定位误差为管线长度的0.015%。  相似文献   
525.
以中国-俄罗斯民用飞机起落架噪声特性及控制技术联合研究中所使用的5.5 m×4 m声学风洞(FL-17风洞)为例,介绍了大型声学风洞在科研工作中的应用情况。首先介绍了FL-17风洞的研制历程与各项性能指标;然后基于中俄联合研究中的大尺度起落架气动噪声风洞试验,概述了起落架噪声相关领域的研究现状,以及利用FL-17风洞开展的起落架噪声机理与控制技术方面的研究内容与成果,如试验、数值模拟和噪声预测数据库,以及基于非常规截面方法和空气幕方法的起落架降噪技术等;最后,对于大型声学风洞的科研使用给出了一些经验和建议。  相似文献   
526.
针对飞机舱内的低频宽带噪声控制难题,提出了适用于飞机壁板隔声增强的层合声学超材料。该层合声学超材料由前、后2层不同构成参数的约束型薄膜声学超材料板,及其中间填充的多孔吸声材料复合而成。通过建立层合声学超材料的隔声计算有限元模型,分析各层约束型薄膜声学超材料,以及两者复合构成的层合声学超材料的隔声特性关系,着重研究层合声学超材料的负质量效应对其隔声特性的影响机理。基于四传声器法声阻抗管测试系统,测量层合声学超材料的法向入射隔声量,用以验证有限元模型的有效性。最后,在半消室开展大尺寸层合声学超材料的插入损失试验,结果表明在100~500 Hz的低频工作频段,面密度为1.5 kg/m2的层合声学超材料样件,其算术平均插入损失达到14 dB,体现了优异的低频宽带隔声能力。研究工作对于采用轻薄声学超材料提高飞机壁板的低频宽带隔声性能具有一定的理论和工程指导价值。  相似文献   
527.
以北京航空航天大学4 m×3 m低湍流强度、低背景噪声的大型封闭回路气动声学风洞(BHAW)设计需求为工程应用背景,采用k-ωSST湍流模型进行了数值模拟,分析了在多个扩张比下的拐角导流片安装角对流场的影响。研究结果验证了在不同拐角扩张比下的总压损失系数均随导流片安装角增大而先减小后增大,且存在极小值点,极值点对应的导流片安装角与拐角扩张比呈现正相关。在不同的扩张比下,局部损失系数均随导流片安装角增大呈现先减小后增大的变化规律;相同导流片安装角下,拐角中部导流片的摩擦损失系数最大,导流片安装角的变化对中部导流片(即6~8号导流片)的流速影响较小;随着拐角扩张比增大,拐角出口管道内气流不均匀性增大,最佳导流效果的导流片对应的安装角增大。在综合考虑降低总压损失系数和减小管道出口气流偏角两个设计原则后,BHAW风洞为扩张比为1.17的第一拐角选择44°的设计安装角,为扩张比为1的第二、三、四拐角选择44°、43°、42.5°的设计安装角。通过数值计算验证了风洞试验段的核心区动压系数小于0.2%、速度水平偏角小于0.1°,满足BHAW气动设计要求。  相似文献   
528.
以声学超表面为研究对象,使用线性稳定性理论(LST),研究了声学超表面导纳相位与幅值对超声速平板边界层内宽频不稳定模态的影响规律。结果表明:当导纳相位θ接近0.5π时,第1模态被抑制的同时第2模态会被激发,且在较低频率范围内导纳幅值的增大能够使第1模态更加稳定;当导纳相位θ接近π时,可抑制第2模态但同时激发第1模态;整体上,导纳幅值越大,对不稳定模态的抑制或激发效果越明显。在此基础上,结合缝隙几何参数对导纳的影响,提出一种可实现性宽频抑制方案,通过分段设计声学超表面微结构的几何尺寸,实现了同时抑制第1模态和高频第2模态的目标,并使用e N方法验证了转捩抑制效果。  相似文献   
529.
进气道实验需要测量进气道出口截面的动态总压,当动态压力传感器与测点之间存在管道时,动态总压测量值与真值之间存在较大误差,进而会影响进气道出口截面湍流度的测量精度。通过在中国空气动力研究与发展中心涡轮动力模拟器校准箱的实验,系统地研究了管道对动态总压和湍流度测量的影响。实验结果表明:管道对动态总压和湍流度测量的影响非常严重,动态总压脉动量频域值可被放大10倍以上,湍流度可以放大2.8倍以上。基于修正耗散模型,通过实验结果对修正耗散模型进行了标定,并提出了动态总压管道影响修正方法,修正方法能够有效减小管道所引起的测量误差。   相似文献   
530.
螺旋桨噪声在航空航天和水中装备等领域广泛存在,是气动声学领域的重要问题和难点问题。螺旋桨噪声问题涉及时间和空间上非均匀各向异性的湍流来流,乃至多尺度的湍流结构与叶片之间的复杂干涉作用,对于螺旋桨噪声问题中的物理机制尚需进一步探索。本文首先针对20世纪70年代提出的螺旋桨吸入湍流噪声的基线问题,详述了50年来螺旋桨噪声研究的发展历史,分析和归纳了螺旋桨噪声在理论、试验和计算等方面的研究成果,并对一些尚未解决的难点进行了阐述。接着介绍了转静干涉、吸入边界层湍流等螺旋桨噪声的若干基本问题。最后,结合实际需求,对下一代飞行器、无人机和水中装备等领域的研究历史和发展现状进行了阐述,并对螺旋桨噪声研究的未来发展方向和潜在应用进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号