首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   145篇
  国内免费   86篇
航空   499篇
航天技术   91篇
综合类   74篇
航天   179篇
  2024年   4篇
  2023年   29篇
  2022年   35篇
  2021年   30篇
  2020年   44篇
  2019年   36篇
  2018年   23篇
  2017年   36篇
  2016年   28篇
  2015年   38篇
  2014年   44篇
  2013年   29篇
  2012年   40篇
  2011年   42篇
  2010年   29篇
  2009年   38篇
  2008年   24篇
  2007年   32篇
  2006年   31篇
  2005年   18篇
  2004年   16篇
  2003年   27篇
  2002年   11篇
  2001年   22篇
  2000年   19篇
  1999年   8篇
  1998年   15篇
  1997年   17篇
  1996年   9篇
  1995年   8篇
  1994年   11篇
  1993年   14篇
  1992年   11篇
  1991年   9篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有843条查询结果,搜索用时 15 毫秒
41.
42.
通过对圆环形金属丝网橡胶成型制造过程的分析,在圆环嵌套模型基础上,结合干摩擦非线性理论和小曲梁模型建立了金属丝网橡胶材料的非线性本构关系,对不同相对密度的金属丝网橡胶试件进行了静态压缩实验,通过实验数据确定了本构关系方程的各项系数并实验结果进行比较.研究结果表明:建立的本构关系模型可以很好地描述金属丝网橡胶的非线性力学特性,实验结果能够较好地符合理论结果,并且该模型反映了相对密度、网格大小和网格宽度等参数的影响,从而实现了对材料结构刚度的预估.   相似文献   
43.
旋转冲压压缩转子试验系统通流部分数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了评估旋转冲压压缩转子试验系统的气动性能,采用Fluent软件对其通流部分在设计转速下的流场进行了全通道数值模拟。分析了旋转冲压压缩转子达到最高效率时,试验系统各部分的总体性能以及导叶段、旋转冲压压缩转子段和出口支板段的流动特征。计算结果表明,进口段和导叶段内气流损失较小,总压恢复系数分别为0.995和0.979,且气流在导叶内基本实现了预期的偏转和加速。旋转冲压压缩转子压比较高,单转子压比可到2.756。超声速压缩面区域不同节距方向的激波系结构有较大差异,同时存在正常反射和马赫反射现象。出口支板段存在大范围的流动分离,不利于出口气流顺畅的流出。  相似文献   
44.
中应变率下HTPB推进剂压缩力学性能和本构模型研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为研究固体推进剂在中应变率条件下的压缩力学性能,在高应变率液压伺服试验机上开展了单轴压缩实验,并获取了温度范围为-40~25℃及0.40~85.71s-1应变率下HTPB推进剂的应力-应变曲线。结果表明,本文的实验方法是有效的,温度和应变率对HTPB推进剂的压缩力学性能影响显著。随温度降低和应变率升高,应力-应变曲线特性变得更加复杂,并与准静态下的应力-应变曲线特性有明显区别。压缩模量E和压缩应力σ0.17随温度的降低和应变率的升高而逐渐增加,且均与应变率具有相对较好的线性双对数关系。在低温和较高应变率的双重作用下,-40℃,85.71s-1条件下的压缩模量E和压缩应力σ0.17分别为25℃,0.40s-1条件下数值的10.64倍和4.25倍。基于时温等效原理,得到了HTPB推进剂的压缩力学性能主曲线,该主曲线能够对低温较宽应变率范围内推进剂的压缩力学性能进行预测。在朱-王-唐非线性粘弹性本构模型的基础上,构建了考虑温度和应变率效应的固体推进剂中应变率压缩本构模型,并采用遗传算法拟合了本构参数。通过不同温度和应变率下预测结果与实验数据的比较,验证了模型的有效性。所建模型能够较好地描述0.17应变以内HTPB推进剂的压缩变形,可为低温中应变率下固体火箭发动机药柱的结构完整性分析提供理论基础。  相似文献   
45.
针对L波段数字航空通信系统(L-DACS1)反向链路测距仪(DME)信号干扰正交频分复用(OFDM)接收机的问题,提出基于联合压缩感知与接收分集的干扰抑制方法。在地面基站各接收支路中,首先通过压缩感知重构DME干扰信号,随后将重构的DME信号在时域进行干扰消除,消除干扰后各支路信号最终通过最大比值合并提高OFDM解调器输出信噪比,以克服测距仪残留信号的影响。仿真结果表明:该方法可有效抑制DME信号的干扰,提高L-DACS1系统的可靠性。  相似文献   
46.
航空复合材料加筋板由于具有良好的力学性能,广泛地应用于航空结构中。本工作研究了航空复合材料加筋板压缩屈曲及后屈曲力学性能,首先应用工程方法对复合材料加筋板进行压缩稳定性计算,得到加筋板的屈曲载荷和破坏载荷的预估值;其次,开展复合材料加筋板压缩稳定性实验,得到实验件的屈曲及破坏形式、实验件的载荷-应变及载荷-位移关系和实验件的屈曲载荷和破坏载荷。结果表明:采用工程方法得到的计算结果与实验结果较为吻合,屈曲载荷和破坏载荷的误差分别为6.12%和9.31%,合理应用工程方法可以为实验提供较好的指导;加筋板的破坏形式为壁板的分层、鼓包和撕裂、筋条的断裂以及筋条-壁板的脱粘;屈曲比为1.65的复合材料加筋板具有较强的后屈曲承载能力;工程中可充分应用加筋板的后屈曲承载能力提高结构的利用效率。  相似文献   
47.
肖阳  徐可君  秦海勤  贾明明 《推进技术》2020,41(10):2316-2324
针对雨流计数法在峰谷值提取时进行等值压缩,忽略保载时间的问题进行了改进,提出了一种基于损伤曲线的疲劳-蠕变载荷等效转换方法。利用非线性疲劳损伤累积函数和损伤等效原则,建立了不同应力水平、不同保载时间下疲劳-蠕变载荷与疲劳载荷之间的等效换算模型。利用涡轮盘材料试验数据,计算了不同循环加载条件下的等效换算比,得到了其随保载时间的变化规律。利用改进的雨流计数法,编制了航空发动机高压涡轮盘载荷谱,并将其与寿命-时间分数预测法相结合,得到了涡轮盘剩余寿命。结果表明,改进的雨流计数法综合考虑了疲劳-蠕变耦合损伤对涡轮盘寿命造成的影响,相比于传统雨流计数法,寿命预测误差降低了15.02%,验证了该方法的有效性。  相似文献   
48.
基于任意角度压缩感知(CS)方法分析了传感器安装角度偏差对风扇/压气机周向模态识别重构的影响,设计了一套自适应角度优化程序修正重构误差。利用数值试验探究了传感器角度偏差和数量对周向模态重构结果的影响,研究表明:当角度偏差等级为2.5%时,平均重构误差达到10%以上,若保证重构误差基本不变,将传感器数量从7个增加至25个,仅可以将角度偏差等级放宽至4%。而采用小生境微种群遗传算法进行自适应角度优化,在20 dB信噪比下,通过自适应角度优化可将角度偏差等级从2.5%放宽至10%,降低了传感器安装的精度要求。成功优化了一款冷却风扇在前三阶叶片通过频率下的主要周向声模态重构幅值。自适应角度优化算法有效提升了基于压缩感知的风扇/压气机周向模态重构可靠性。  相似文献   
49.
通过对炭纤维增强复合材料进行70、85、100℃下的循环水浸吸湿试验,研究了复合材料在不同水浸温度下的吸湿-脱湿行为规律。同时,对循环吸湿-脱湿过程中的试样进行层间剪切强度测试和动态力学性能测试,并结合扫描电镜观察循环吸湿各个阶段的纤维基体结合状态。结果表明,水浸温度越高,水分的扩散速率越快,饱和吸湿率越大。经过循环吸湿后复合材料的吸湿行为仍满足Fick第二定律,吸湿后层间剪切强度下降,湿热循环次数越多下降的越明显。脱湿后层间剪切强度有所恢复,水浸温度越高造成的不可逆破坏越大,层间剪切强度恢复的越少。干态时的玻璃化转变温度为231℃,吸湿后下降了37℃。  相似文献   
50.
韩龙  许进升  封涛  周长省 《推进技术》2017,38(8):1885-1892
为了描述NEPE(Nitrate Ester Plasticized Polyether Propellant)复合固体推进剂的非线性粘弹性力学行为,基于粘弹性脱湿准则及所建立的粘弹性时间-损伤等效原理,将颗粒脱湿所造成的材料损伤以折算时间的形式引入至线性粘弹性本构关系中,从而建立起可考虑细观颗粒脱湿影响的NEPE复合固体推进剂非线性粘弹性本构模型。通过定制配方NEPE材料在不同温度(-50, -35, -20, 0, 20, 35及50°C)、不同应变水平(5%, 10%, 15%, 20%, 25%以及30%)的应力松弛试验及单轴拉伸试验,结合反演技术,获取了本构模型参数。最后利用Matlab软件平台实现了本构模型对于NEPE单轴拉伸力学行为的数值预测,数值计算结果与试验曲线较为吻合,预测数值与试验值差值在15%以内,说明所建本构模型能够较好地描述NEPE推进剂在一定应变率范围内(3.333×10-4~0.1s-1)的粘弹性力学行为,为预测具有复杂细观结构的复合固体推进剂的宏观力学行为提供了一条较为简单便利的实现方式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号