首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   156篇
  国内免费   82篇
航空   511篇
航天技术   114篇
综合类   75篇
航天   169篇
  2024年   10篇
  2023年   19篇
  2022年   35篇
  2021年   32篇
  2020年   35篇
  2019年   42篇
  2018年   15篇
  2017年   26篇
  2016年   32篇
  2015年   28篇
  2014年   39篇
  2013年   32篇
  2012年   35篇
  2011年   44篇
  2010年   34篇
  2009年   38篇
  2008年   28篇
  2007年   36篇
  2006年   34篇
  2005年   24篇
  2004年   27篇
  2003年   11篇
  2002年   22篇
  2001年   22篇
  2000年   13篇
  1999年   18篇
  1998年   19篇
  1997年   17篇
  1996年   12篇
  1995年   20篇
  1994年   14篇
  1993年   11篇
  1992年   14篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
71.
针对高宽比为1/12的近流线型宽体箱梁进行了一系列参数化的三分力测力试验,研究了栏杆透风率、检修车轨道位置、桥面粗糙度对三分力系数的影响.运用CFD工程软件Fluent 15.0模拟二维风场,对三分力系数变化的可能机理进行讨论.结果表明,对于近流线型宽体箱梁:(1)随迎角由负到正加大,CD先降后升,CL与Cm总体趋于升高,但均不关于零迎角对称或反对称;(2)栏杆透风率的减小一方面加大了断面挡风面积,使尾流变宽,CD升高;另一方面扩大了断面上方负压区范围(正迎角工况),提高了上表面压力系数(负迎角工况),使正、负迎角下的升力均增加,即CL绝对值升高;(3)正迎角来流时,检修车轨道的内移使断面下方的负压区缩小、压力系数减小、尾流变窄,则CD、CL均降低;但负迎角来流时,其位置的移动未对分离区造成明显影响,则CD与CL均未出现显著波动;(4)正迎角来流时,桥面粗糙度的提高减小了上表面的分离角,使负压区缩小、尾流变窄,则CD降低;且负压区的缩小使得朝上的升力减小,即CL降低.负迎角来流时,粗糙度的提高使上表面的阻力与压力系数均增加,则CD升高、CL的绝对值升高;(5)栏杆透风率、检修车轨道位置及桥面粗糙度对Cm的影响可以忽略不计.  相似文献   
72.
陈霞  高树军 《航空计测技术》1998,18(6):36-36,43
在已知合成标准不确定和假定包含因子的条件下,Biengyne-Chebyshev不等式给出了置信水平(或置信概率)的取值范围,这个结果不依赖于被测量的概率分布的具体形式。  相似文献   
73.
在神舟七号执行中国航天员首次太空行走任务过程中,最大的亮点之一就是翟志刚穿的我国自己研制的飞天舱外航天服。其质量为120千克,单套价值高达3000万元人民币,可靠系数为0.997,可支持至少4小时的舱外活动,能重复使用5次以上,服装气体泄漏率不大于2升/分钟;应急供氧时间不小于30分钟;平均散热量为300瓦。为满足航天员在太空活动的需要,飞天和美俄舱外航天服一样,具有供氧、温控、二氧化碳吸收等环境控制、生命保障与安全防护功能,具备信息采集传输、通信能力,同时能满足人机工效要求。该  相似文献   
74.
康耀红  李勇 《航空计算技术》1998,28(2):15-18,28
(接上期)2多传感器目标检测的性能评估前面,我们对于单传感器目标检测情形建立了基于几何直观的单一评价指标,这种单一评价指标是单传感器检测率和虚警率的综合反映。对于多传感器目标检测情形,我们可以依据多传感器目标检测的系统检测率和系统虚警率将(5)式予以推广,建立多传感器目标检测的单一评价指标。为此,只需深入讨论多传感器目标检测情形下的系统检测率和系统虚警车。2.1系统检测率和系统虚警率容易证明,已有的各种多传感器目标检测模型实际上都等价于某个(K/N)规则。令R(U)表示融合中心基于传感器级决策的全局决…  相似文献   
75.
航空用国产碳纤维/双马树脂复合材料湿热特性   总被引:1,自引:1,他引:0  
针对1种航空用国产T700级碳纤维和4种双马树脂(QY9611、5429、QY9512、QY8911-4),采用3种湿热条件(100℃水煮、70℃水浸、70℃/85%相对湿度)对其复合材料单向层板进行湿热处理,通过研究吸湿量、扩散系数、显微结构、化学成分、耐热温度及力学性能,分析了复合材料的湿热特性。结果表明,4种复合材料在3种湿热条件下的吸湿行为均符合Fick第二扩散定律,100℃水煮时平衡吸湿量和扩散系数最大,70℃/85%相对湿度时两者最小。4种复合材料吸湿速度有明显区别,这与其原材料形式和成型工艺不同有关。湿热处理未导致复合材料内部产生损伤和化学变化,主要引起增塑效应,导致玻璃化转变温度降低。复合材料的90°拉伸性能测试结果表明,高温和吸湿耦合作用下复合材料力学性能衰减更为明显,破坏模式由基体开裂转变为界面脱黏和开裂。   相似文献   
76.
张西  宋九玲 《飞行试验》1998,14(3):22-24
本文以能量法研究直升机带前飞速度的自转下降性能,提出了稳定自转下滑时最小自转下降率的计算数学模型,给出了样机的计算结果,该结果经过适当的修正后飞行试验结果比较吻合。  相似文献   
77.
针对现有基于四面体单元的构架式天线机构结构复杂、收拢率低、运动副数量多等问题,基于3RR-3RRR四面体组合单元和基于3RR-3URU四面体对称组合单元分别提出了两种新型模块化可展结构。以3个组合单元组成的模块化结构为分析对象,首先,详细介绍了模块化结构的组成及虎克铰轴线布置,并利用组合单元本身的自由度数目及性质,采用拆杆-等效-复原的思想,应用螺旋理论和G-K公式分别对提出的两种模块化结构进行了自由度分析,得到了自由度数目及性质。其次,应用Adams动力学仿真软件对两种模块化结构进行运动仿真,仿真结果验证了自由度分析的正确性。以完全展开和完全收拢时机构所占的空间体积比值表征该机构的收拢率,计算现有基于四面体单元的非模块化机构与提出的模块化机构的收拢率。最后,对比分析非模块化机构与模块化机构的自由度数目、运动副数目及收拢率。分析结果表明,基于3RR-3URU四面体对称组合单元的模块化结构既能实现较大收拢率,自由度及运动副数目也相对减少,且组成大型天线时杆件类型较少。研究结果为该类模块化构架式可展天线结构的设计与分析提供一定理论依据。  相似文献   
78.
基于概率的航空发动机飞行换算率改进算法   总被引:2,自引:1,他引:1  
李洪伟  叶斌  蔡娜 《航空动力学报》2014,29(5):1184-1190
针对斯贝MK202发动机应力标准对零部件工作寿命评定中未包含各种随机因素的影响,考虑零部件疲劳性能参数的分散性和发动机整机载荷谱的随机性,将实测数据统计分析、零部件应力有限元分析以及蒙特卡罗模拟分析有机结合,提出了基于概率的航空发动机飞行换算率改进算法,以解释航空发动机零部件实际工作寿命存在的差异.经范例验证表明:确定性寿命评定方法的飞行换算率计算结果与改进算法下的平均值相当;对于单次飞行换算率,改进算法的单次飞行换算率平均值比确定性方法的计算结果小2%;对于综合飞行换算率,改进算法的综合飞行换算率平均值比确定性方法的结果小1%;且在改进算法下单次飞行换算率和综合飞行换算率服从正态分布.  相似文献   
79.
为了深入了解通气空化流动现象,利用高速全流场显示技术,对绕圆头回转体通气空化流型进行实验研究。结果表明,重力效应和通气量对通气空化的多相流流型起主要作用。定义了弗洛德数和通气率两个无量纲数,将绕圆头回转体通气空化分为5种多相流流型,即透明空泡、透明气弹、透明分层、水气混合以及半透明水气混合。流动参数对流型的影响分为2个阶段,即重力起主要作用阶段和重力效应不明显阶段。在重力起主要作用阶段,通气率一定时,随着弗洛德数的增大,附着弹体的空泡倾斜程度变小,弹体上表面的断裂空泡转变为贴着弹体壁面的稳定空泡;弗洛德数一定时,随着通气率的增大弹体上表面断裂空泡的尺度不断增大。在重力效应不明显阶段,通气率一定时,随着弗洛德数的增大,雷诺数变大,流场的湍流强度增大,空泡尾流区域水气交换的程度加剧;弗洛德数一定时,随着通气率的增大,通气空化数减小,绕弹体的云雾状空泡逐渐转变为透明空泡。最后,进一步分析了重力影响下透明空泡脱落的非定常过程,以及反向射流作用下云雾状空泡交替脱落的非定常过程。  相似文献   
80.
基于航空发动机叶片的全报废数据,建立了发动机叶片报废率威布尔分布模型,并运用中位秩的方法对威布尔模型的参数进行了求解。为验证所建立模型的有效性,运用某航空公司CFM56-7B航空发动机报废率数据对模型进行了验证,取得了较好的效果。所建立的报废率模型能够为航空发动机的送修目标确定、维修工作范围制定等提供理论的支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号