首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1982篇
  免费   657篇
  国内免费   252篇
航空   778篇
航天技术   1639篇
综合类   69篇
航天   405篇
  2024年   4篇
  2023年   70篇
  2022年   142篇
  2021年   179篇
  2020年   196篇
  2019年   170篇
  2018年   139篇
  2017年   89篇
  2016年   135篇
  2015年   132篇
  2014年   160篇
  2013年   185篇
  2012年   218篇
  2011年   203篇
  2010年   129篇
  2009年   121篇
  2008年   115篇
  2007年   114篇
  2006年   80篇
  2005年   45篇
  2004年   25篇
  2003年   24篇
  2002年   15篇
  2001年   27篇
  2000年   44篇
  1999年   43篇
  1998年   18篇
  1997年   22篇
  1996年   2篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   4篇
排序方式: 共有2891条查询结果,搜索用时 515 毫秒
121.
采用二烯丙基双酚A和二苯甲烷型双马来酰亚胺与双酚A型氰酸酯共聚,以改善氰酸酯树脂的工艺和耐热性能;利用DSC,TGA,DMA表征了树脂的固化行为和耐热性能;此外,还研究了树脂的力学性能及高频下的介电性能。结果表明,改性后的氰酸酯树脂固化反应温度降低了约60℃,改性树脂固化物在氮气气氛下Td5约400℃,Tg约270℃,显示了良好的耐热性能。在7~15 GHz宽频范围下,改性树脂的介电常数3,介电损耗0.008~0.01,显示了良好的介电性能。  相似文献   
122.
针对原有CHZ型海洋重力仪重力测量伺服回路PI控制模型的不足,提出对强扰动频段(海浪频率)用一个独立反馈回路进行抑制衰减的方案,并进行了理论分析和建模仿真,表明该方案可将海浪对采样质量的扰动幅度降低50%以上,并提高重力测量带宽一个量级,因此可改善重力仪在恶劣海况下的工作性能,改善测量中的非线性效应.  相似文献   
123.
针对我国未来自主金星探测活动中的测量与导航实施问题,重点研究了地基测定轨系统的设计与实现,阐述了测距、测速和甚长基线干涉测量等能力,提出了基于我国金星探测测定轨系统设计方案,建立了高精度测量模型和定轨策略,并完成了软件实现。利用与欧空局联合开展的金星快车探测器跟踪试验,对该系统进行了初步验证,实测数据定轨结果与欧空局事后精密轨道的位置偏差优于485m,速度偏差优于5.5cm/s。试验结果验证了该系统的数据处理和轨道计算能力达到欧空局金星快车探测器同等水平,初步检验了该系统测量数据处理和轨道确定部分的正确性、有效性,可为后续我国自主金星探测提供测定轨技术支持。  相似文献   
124.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   
125.
This paper analyzes a Type U burst at 1.0 – 2.8 GHz which occurred between 12:36:26 – 12:36:32 UT on 1992 August 22, observed by Ond ejov Observatory, Czech Republic. This may be the first example of Type U bursts in the decimetric range, as far as we know. From analysis we came to the following conclusion: (1) The frequency drift rates of the ascending and descending branches are 1.25 and 0.225 GHz/s, respectively, and the velocities of the electron beam are 0.38 c and 0.26 c, respectively; (2) The burst decay of the ascending branch is larger than that of the descending branch; (3) The variations of the maximum frequencies of instantaneous spectra with time appear as from the highest (1.92 GHz) to the lowest (1.0 GHz), then toward higher frequency (1.53 GHz) (this is consistent with that predicted by plasma emission theory); (4) The bandwidths of the ascending branch are about twice that of the descending branch (this may be caused by the larger drift rates of the ascending branch); (5) The temperature of the coronal loop apex is 6.3 × 106 K; (6) The magnetic field at the top of the loop is greater than 9.2 G; (7) This U burst emission is plasma radiation at the second harmonic.  相似文献   
126.
基于机器学习中的相似度算法,建立了在历史太阳风数据中寻找与当前太阳风特征相近事例的推荐模型,用来预报地磁Kp指数.使用1998-2019年间随机选择的120个太阳风事例作为测试数据集,该模型能够推荐得到历史上与输入太阳风造成相似地磁影响的太阳风事例,最优事例的Kp指数与实际值的均方根误差为0.79,相关系数为0.93....  相似文献   
127.
地基光电观测在同步轨道目标监测领域具有重要作用.为评估单站光电设备对同步轨道目标的实际测定轨能力,利用上海天文台佘山站1.56m望远镜,采用CCD漂移扫描光电技术,对3颗北斗同步卫星开展试验观测,基于卫星精密星历评估目标的测定轨外符精度.结果表明:同步轨道目标的天文定位在方位和俯仰方向上的外符精度均好于0.3";在单圈次观测情况下,尽管轨道预报精度较低,约为数千米量级,但是观测弧段内定轨精度可优于百米;在多圈次观测情况下,轨道改进效果显著,定轨精度优于50m,外推至4d的轨道预报精度为百米量级.此外,定量评估了每晚不同观测时间跨度下同步轨道目标的测定轨精度,为单站光电设备实际应用提供了参考.   相似文献   
128.
空间流体回路的载荷支路来流温度在一定范围内随机变化,需采取有效热控措施消除来流温度变化对回路单点位置处恒温工作载荷的热影响.传统电加热方式需要额外能耗并且会产生废热,本文提出一个PID控制下的冷热回路交混控温方案,在充分利用工质吸收的废热、提高机柜内能源利用率的同时,实现对恒温设备冷板入口温度的精确控制,以满足冷板上载荷的恒温工作需求;设计流体回路组成与控制方案,并通过仿真分析对方案进行了验证.结果表明,该流体回路系统可以满足对来流温度的高精度控制要求,且相比于PID控制算法,模糊PID的控制效果更好,具有响应快、超调量小、控制精度高等特点,应优先选择模糊PID作为控制算法.   相似文献   
129.
随着科技的发展,空间天气对电力系统、通信导航系统和航天资产等遍布全球的技术基础设施的影响越来越深.需要加强对空间天气事件过程的理解,提升空间天气的预报能力,优化基础设施设计,从而减缓空间天气对社会造成的影响.基于这些需求,国际空间研究委员会(COSPAR)联合国际与日共存计划(ILWS)共同成立专家组,研究制定了全球2015-2025空间天气发展路线图.本文对该路线图进行介绍和解读,讨论该路线图对中国空间天气发展的启示.  相似文献   
130.
风云三号C星GNOS北斗掩星电离层探测初步结果   总被引:3,自引:1,他引:2  
利用风云三号卫星C星GNOS掩星探测仪电离层数据,分析了2013年10月FY-3C GNOS探测的北斗掩星电离层廓线分布,将2013年10月1日至2015年10月10日期间FY-3C GNOS观测的F2层峰值电子密度(NmF2)与地面电离层测高仪观测结果进行对比,验证了FY-3C GNOS北斗电离层掩星的探测精度.结果表明,FY3-C GNOS北斗电离层掩星与电离层测高仪探测的NmF2数据相关系数为0.96,平均偏差为10.21%,标准差为19.61%.在不同情况下其数据精度有如下特征:白天精度高于夜晚;夏季精度高于分季,分季精度高于冬季;中纬地区精度高于低纬地区,低纬地区精度高于高纬地区; BDS倾斜同步轨道(IGSO)卫星精度高于同步轨道(GEO)卫星和中轨道(MEO)卫星.FY-3C GNOS北斗电离层掩星与国际上其他掩星电离层数据精度的一致性对GNSS掩星探测资料的综合利用具有重大意义.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号