首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3623篇
  免费   6篇
  国内免费   7篇
航空   1527篇
航天技术   1039篇
综合类   10篇
航天   1060篇
  2022年   11篇
  2021年   37篇
  2019年   14篇
  2018年   190篇
  2017年   159篇
  2016年   87篇
  2015年   43篇
  2014年   96篇
  2013年   104篇
  2012年   118篇
  2011年   222篇
  2010年   185篇
  2009年   252篇
  2008年   251篇
  2007年   196篇
  2006年   66篇
  2005年   120篇
  2004年   96篇
  2003年   102篇
  2002年   70篇
  2001年   119篇
  2000年   56篇
  1999年   49篇
  1998年   65篇
  1997年   42篇
  1996年   67篇
  1995年   56篇
  1994年   57篇
  1993年   35篇
  1992年   50篇
  1991年   12篇
  1990年   14篇
  1989年   48篇
  1988年   18篇
  1987年   26篇
  1986年   23篇
  1985年   91篇
  1984年   50篇
  1983年   34篇
  1982年   44篇
  1981年   79篇
  1980年   18篇
  1979年   11篇
  1978年   12篇
  1977年   15篇
  1976年   13篇
  1975年   20篇
  1974年   23篇
  1973年   10篇
  1972年   10篇
排序方式: 共有3636条查询结果,搜索用时 15 毫秒
81.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   
82.
Engineering concepts for inflatable Mars surface greenhouses.   总被引:1,自引:0,他引:1  
A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting.  相似文献   
83.
PLANET-B is the Japanese Mars orbiter program. The primary objective of the program is to study the Martian aeronomy, putting emphasis on the interaction of the Martian upper atmosphere with the solar wind. The launch of the spacecraft is scheduled for August, 1998. The periapsis altitude and the apoapsis are 150 km and 15 Mars radii, respectively. The dry weight of the orbiter is 186 kg including 14 science instruments. Advanced technologies are employed in the design of the spacecraft in order to overcome the weight limitation. This paper describes the scientific objectives of the PLANET-B program and outline of the spacecraft system.  相似文献   
84.
The viewpoint of working group of Russian experts on the problem of planetary protection for future manned and unmanned Mars mission is presented. Recent data of Martian environment and on survival of terrestrial microorganisms in extreme conditions were used for detailed analysis and overview of planetary protection measures in regard to all possible flight situations including accidental landing. The special emphasis on "Mars-94" mission was done. This analysis resulted in revised formulation of spacecraft sterilization requirements and possible measures for their best implementation. New general combined approach to spacecraft sterilization was proposed. It includes penetrating radiation and heat treatment of spacecraft parts and components which is to be carried out before the final assembly of spacecraft and gaseous radiation sterilization of the whole spacecraft during the flight to Mars (or from Mars for return missions).  相似文献   
85.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   
86.
An analysis of the experimental data available and of the present theoretical concepts shows that even the initial physicochemical chemical precellular stages of biological evolution are impossible in the interstellar medium, while biomonomers possibly formed on asteroids and comets might have participated after transportation to the Earth in the final stages of the origin of the first precellular biological structures and then in the first living cells.  相似文献   
87.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
88.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
89.
The radiation risk at the end of the flight was calculated for the members of the main expeditions on the "Mir" station. It was based on the absorbed dose dynamics data measured by the board dosimeter. The radiation damage models created for standards of the radiation safety of the space flights were used in the calculations. The analysis of the obtained values of the risk and its dynamics for some cosmonauts are presented in the topic. The risk values delta P are close to the limited levels given by equation of delta P = 0.6 x 10 x T(-4), [this equation appears also as delta RHrad = 0.6 x 10(-4) x T later in the text] where T--is flight duration in months.  相似文献   
90.
During the 8 day IML-1 mission, regeneration of cell walls and cell divisions in rapeseed protoplasts were studied using the Biorack microscope onboard the Space Shuttle "Discovery". Samples from microgravity and 1g protoplast cultures were loaded on microscope slides. Visual microscopic observations were reported by the payload specialist Roberta Bondar, by down-link video transmission and by use of a microscope camera. Protoplasts grown under microgravity conditions do regenerate cell walls but to a lesser extent than under 1g. Cell divisions are delayed under microgravity. Few cell aggregates with maximum 4-6 cells per aggregate are formed under microgravity conditions, indicating that microgravity may have a profound influence on plant cell differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号