首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
  国内免费   1篇
航空   32篇
航天技术   34篇
航天   9篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   9篇
  2013年   6篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   8篇
  2008年   7篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1993年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1969年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
21.
The prediction of energy detector performance requires a complicated calculation or a tedious manipulation of nomograms. For a large time-bandwidth product WT, however, it is commonplace to use the formula (E/No) = d?WT to anticipate the required average input energy-to-noise spectral density ratio for a wanted signal detectability parameter d and thus avoid the computational difficulty. This paper proposes a modified formula (E/No) = ?d?WT that is applicable for all range of WT, where ? is the modification factor derived on an empirical basis. The Van Trees measure of the signal detectability parameter of the energy detector also is derived analytically and compared to the modified equation.  相似文献   
22.
VLF radiation from electrical power transmission lines stimulates nonlinear wave-particle and wave-wave interactions in the magnetosphere, resulting in wave growth, triggering of emissions, and entrainment of other natural or manmade VLF waves. Examples of these effects will be reviewed using both ground-based and satellite data. In many instances, the interpretation of data is aided by Siple transmitter results that show similar spectral characteristics.  相似文献   
23.
The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth’s atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.  相似文献   
24.
The extended Kalman filter (EKF) has been widely used as a nonlinear filtering method for radar tracking problems. However, it has been found that if cross-range measurement errors of the target position are large, the performance of the conventional EKF degrades considerably due to nonnegligible nonlinear effects. A new filtering algorithm for improving the tracking performance with radar measurements is developed based on the fact that correct evaluation of the measurement error covariance is possible in the Cartesian coordinate system. The proposed algorithm may be viewed as a modification of the EKF in which the variance of the range measurement errors is evaluated in an adaptive manner. The filter structure facilitates the incorporation of the sequential measurement processing scheme, and this makes the resulting algorithm favorable to both estimation accuracy and computational efficiency. Computer simulation results show that the proposed method offers superior performance in comparison to previous methods. Moreover, our developed algorithm provides some useful insight into the radar tracking problem  相似文献   
25.
As a step towards a real-time signal aperture radar (SAR) correlator, custom very large scale integration (VLSI) architectures are developed. Considering the extremely short word length of the data, we derive three architectures with massive parallelism in bit space. Unlike frequency methods, no. degradation is introduced during convolution. Optimized for time and space, they are highly suited to VLSI implementation, and a small architecture with 80 taps operating at 10 MHz has been built using an FPGA  相似文献   
26.
The first Korean multi-mission geostationary satellite, Communication, Ocean, and Meteorological Satellite (COMS) will be launched in 2010. The missions of this satellite will be Ka-band communications, ocean color monitoring, and meteorological imaging. The satellite was designed with only one solar array on the south panel. This novel configuration will keep imaging instruments on the north side from heating up. Asymmetry of the spacecraft configuration requires twice-a-day thruster-based Wheel Off-Loading (WOL) operations to keep the satellite attitude for imaging and communication. Thruster firings during the WOL operations cause the satellite orbit to change two times a day. Weekly East–West Station-Keeping (EWSK) and North–South Station-Keeping (NSSK) maneuver operations are planned for the COMS satellite in order to maintain the satellite in ±0.05° box at 128.2°E longitude.  相似文献   
27.
Despite some setbacks – notably an indigenous launch failure – progress is being made in South Korea's space program and its public image has been boosted by the first flight of a Korean astronaut to the ISS. This report provides an update on recent and forthcoming space activities in the country and on its current cooperative arrangements.  相似文献   
28.
This paper describes the development and validation of a transportable active transponder designed for the image calibration of Korea Multi-Purpose Satellite-5 (KOMPSAT-5) with a synthetic aperture radar (SAR). Ground targets are essential in SAR image calibration. The environment for the deployment of ground targets for SAR image calibration should provide uniformity and minimum interference. The Amazon or deserts are regarded as desirable environments. However, such environments for SAR image calibration are difficult to find in Korea. Thus, it will be advantageous to have an active transponder whose performance will not be severely limited by the absence of such uniform environment. We have therefore developed an active transponder which has an adjustable internal delay and into which the orbit data of an arbitrary satellite can be loaded. The stored obit data with the aid of an internal global positioning system (GPS) receiver and gyroscope enables the active transponder to point to a selected satellite. In addition, a virtual deployment of the active transponder is possible due to its adjustable internal delay. Thus, the developed active transponder can be deployed at any place without environmental constraint. The performance of the developed active transponder is validated using the satellite TerraSAR-X, which is already in operation. The test results show that the active transponder is successfully compliant with the requirements for KOMPSAT-5 image calibration.  相似文献   
29.
The imaging flash lidar has been considered as a promising sensor for the future space missions such as autonomous safe landing, spacecraft rendezvous and docking due to its ability to provide a full 3D scene with a single or multiple laser pulses. The linear-mode flash lidar has been developed and demonstrated for an autonomous safe landing on the Moon in order to provide an accurate distance measurement to the landing site and its 3D image. Yet, the Geiger-mode flash lidar has also been recognized as an emerging technology for the space missions because it is highly sensitive even to a single photon and provides the very accurate timing of photon arrival. In this study, the performance of the Geiger-mode flash lidar is simulated in the approach phase and evaluated for the autonomous landing on the Moon. Furthermore, a new statistical signal processing algorithm is proposed to remove the noise counts in order to obtain the 3D image from a sequence of laser pulses in the situation of the fast moving spacecraft. The algorithm is shown to be effective for the autonomous landing due to its ability to remove noise events under the condition of low signal-to-noise ratio and improve ranging accuracy.  相似文献   
30.
The well-known conventional Kalman filter requires an accurate system model and exact stochastic information. But in a number of situations, the system model has an unknown bias, which may degrade the performance of the Kalman filter or may cause the filter to diverge. The effect of the unknown bias may be more pronounced on the extended Kalman filter (EKF), which is a nonlinear filter. The two-stage extended Kalman filter (TEKF) with respect to this problem has been receiving considerable attention for a long time. Recently, the optimal two-stage Kalman filter (TKF) for linear stochastic systems with a constant bias or a random bias has been proposed by several researchers. A TEKF can also be similarly derived as the optimal TKF. In the case of a random bias, the TEKF assumes that the information of a random bi?s is known. But the information of a random bias is unknown or partially known in general. To solve this problem, this paper proposes an adaptive two-stage extended Kalman filter (ATEKF) using an adaptive fading EKF. To verify the performance of the proposed ATEKF, the ATEKF is applied to the INS-GPS (inertial navigation system-Global Positioning System) loosely coupled system with an unknown fault bias. The proposed ATEKF tracked/estimated the unknown bias effectively although the information about the random bias was unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号