首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   5篇
航天技术   7篇
航天   3篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  1997年   2篇
排序方式: 共有15条查询结果,搜索用时 78 毫秒
11.
The main effects caused by the interplanetary magnetic field (IMF) are analyzed in cases of supersonic solar wind flow around magnetized planets (like Earth) and nonmagnetized (like Venus) planets. The IMF has a relatively weak strength in the solar wind but it is enhanced considerably in the so-called plasma depletion layer or magnetic barrier in the vicinity of the streamlined obstacle (magnetopause of a magnetized planet, or ionopause of a nonmagnetized planet). For magnetized planets, the magnetic barrier is a source of free magnetic energy for magnetic reconnection in cases of large magnetic shear at the magnetopause. For nonmagnetized planets, mass loading of the ionospheric particles is very important. The new created ions are accelerated by the electric field related to the IMF, and thus they gain energy from the solar wind plasma. These ions form the boundary layer within the magnetic barrier. This mass loading process affects considerably the profiles of the magnetic field and plasma parameters in the flow region.  相似文献   
12.
Cosmic strings are topological defects which were generated at a transition phase of the very early Universe and are probably responsible for large-scale structure forming. However, they may pull through all history and exist in the recent epoch. Thus, they can have influence for the recent Universe interacting with different objects. We consider the cosmic string behavior in the vicinity of a spinning black hole by means of a numerical simulation. Here we present preliminary results of this work via a comparison of cosmic string and magnetic flux tube behavior in the Kerr metric. Such an approach follows from the similarity of the equations which describe these objects. Therefore, many aspects of this behavior may be comparable.  相似文献   
13.
We revisit an example of “quasi-steady” magnetic reconnection at the dayside magnetopause on February 11, 1998, observed by Equator-S and Geotail at the dawnside magnetopause. Phan et al. [Phan, T.D. et al., 2000. Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850.] reported oppositely directed jets at these spacecrafts and inferred a length of the reconnection line of about 38RE. Pinnock et al. [Pinnock, M., Chisham, G., Coleman, I.J., Freeman, M.P., Hairston, M., Villain, J.-P., 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann. Geophys. 21, 1467–1482.] used measurements from SuperDARN radars to show that the reconnection electric field was variable. Here we complement this work by obtaining snapshots of the reconnection electric field from the in situ observations. To do this, we apply a reconstruction method based on a model of compressible Petschek-type magnetic reconnection. This independent method uses magnetic field observations as input data to calculate the reconnection electric field. We obtain average values of Erec in the range of 0.4–2.4 mV/m. Further we infer a distance perpendicular to the reconnection line of 0.4–0.6RE. The model results are compared with the two studies mentioned above. It thus appears that while the transfer of momentum for this event is indeed large-scale, the actual rate depends on the time it is measured.  相似文献   
14.
The problem of steady-state magnetic reconnection in an infinite current layer in collisionless, incompressible, nonresistive plasma, except of the electron diffusion region, is examined analytically using the electron Hall magnetohydrodynamics approach. It is found that this approach allows reducing the problem to the magnetic field potential finding, while last one has to satisfy the Grad–Shafranov equation. The obtained solution demonstrates all essential Hall reconnection features, namely proton acceleration up to Alfvén velocities, the forming of Hall current systems and the magnetic field structure expected. It turns out that the necessary condition of steady-state reconnection to exist is an electric field potential jump across the electron diffusion region and the separatrices. Besides, the powerful mechanism of electron acceleration in X-line direction is required. It must accelerate electrons up to the electron Alfvén velocity inside the diffusion region and on the separatrixes. This is a necessary condition for steady-state reconnection as well.  相似文献   
15.
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号