首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8244篇
  免费   18篇
  国内免费   23篇
航空   3629篇
航天技术   2852篇
综合类   31篇
航天   1773篇
  2021年   89篇
  2019年   50篇
  2018年   209篇
  2017年   141篇
  2016年   150篇
  2015年   61篇
  2014年   218篇
  2013年   271篇
  2012年   255篇
  2011年   377篇
  2010年   276篇
  2009年   409篇
  2008年   433篇
  2007年   274篇
  2006年   188篇
  2005年   233篇
  2004年   218篇
  2003年   258篇
  2002年   184篇
  2001年   268篇
  2000年   142篇
  1999年   181篇
  1998年   220篇
  1997年   136篇
  1996年   188篇
  1995年   243篇
  1994年   222篇
  1993年   127篇
  1992年   169篇
  1991年   54篇
  1990年   61篇
  1989年   159篇
  1988年   65篇
  1987年   66篇
  1986年   75篇
  1985年   221篇
  1984年   177篇
  1983年   135篇
  1982年   141篇
  1981年   247篇
  1980年   65篇
  1979年   55篇
  1978年   58篇
  1977年   51篇
  1975年   58篇
  1974年   46篇
  1973年   37篇
  1972年   46篇
  1971年   44篇
  1970年   42篇
排序方式: 共有8285条查询结果,搜索用时 15 毫秒
41.
It is shown that the errors associated with radio elevation measurements may be investigated systematically using a variational technique. The error occurring when spaced antennas are used is compared with that for a single directional antenna. Integral expressions are obtained for the refractive errors.  相似文献   
42.
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known.  相似文献   
43.
HYDRA is an experimental hot plasma investigation for the POLAR spacecraft of the GGS program. A consortium of institutions has designed a suite of particle analyzers that sample the velocity space of electron and ions between 2 keV/q – 35 keV/q in three dimensions, with a routine time resolution of 0.5 s. Routine coverage of velocity space will be accomplished with an angular homogeneity assumption of 16°, appropriate for subsonic plasmas, but with special 1.5° resolution for electrons with energies between 100 eV and 10 keV along and opposed to the local magnetic field. This instrument produces 4.9 kilobits s–1 to the telemetry, consumes on average 14 W and requires 18.7 kg for deployment including its internal shielding. The scientific objectives for the polar magnetosphere fall into four broad categories: (1) those to define the ambient kinetic regimes of ions and electrons; (2) those to elucidate the magnetohydrodynamic responses in these regimes; (3) those to assess the particle populations with high time resolution; and (4) those to determine the global topology of the magnetic field. In thefirst group are issues of identifying the origins of particles at high magnetic latitudes, their energization, the altitude dependence of the forces, including parallel electric fields they have traversed. In thesecond group are the physics of the fluid flows, regimes of current, and plasma depletion zones during quiescent and disturbed magnetic conditions. In thethird group is the exploration of the processes that accompany the rapid time variations known to occur in the auroral zone, cusp and entry layers as they affect the flow of mass, momentum and energy in the auroral region. In thefourth class of objectives are studies in conjunction with the SWE measurements of the Strahl in the solar wind that exploit the small gyroradius of thermal electrons to detect those magnetic field lines that penetrate the auroral region that are directly open to interplanetary space where, for example, the Polar Rain is observed.  相似文献   
44.
The scintillation time-of-flight triggering system of the Gamma-1 gamma-ray telescope provides for both the time-of-flight discrimination and the pulse height discrimination of the secondary particles. The paper gives some experimental results for energy dependence of the instrument efficiency in 30–300 MeV energy range for different trigger logics.  相似文献   
45.
46.
47.
48.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   
49.
Coronal loops are heated by the release of stored magnetic energy and by the dissipation of MHD waves. Both of these processes rely on the presence of internal structure in the loop. Tangled or sheared fields dissipate wave energy more efficiently than smooth fields. Also, a highly structured field contains a large reservoir of free magnetic energy which can be released in small reconnection events (microflares and nanoflares). The typical amount of internal structure in a loop depends on the balance between input at the photosphere and dissipation. This paper describes measures of magnetic structure, how these measures relate to the magnetic energy, and how photospheric motions affect the structure of a loop.The magnetic energy released during a reconnection event. can be estimated if one knows the equilibrium energy before and after the event. For a loop with highly tangled field lines, a direct solution of the equilibrium equations may be difficult. However, lower bounds can be placed on the energy of the equilibrium field, given a measure of the tangling known as the crossing number. These bounds lead to an estimate of the buildup of energy in a coronal loop caused by random photospheric motions. Parker's topological dissipation model can plausibly supply the 107 erg cm–2 s–1 needed to heat the active region corona. The heating rate can be greatly enhanced by fragmentation of flux tubes, for example by the breakup of photospheric footpoints and the formation of new footpoints.  相似文献   
50.
This paper deals with the application of modern estimation techniques to the problem of speech data rate reduction. It is desirable to adaptively identify and quantitize the parameters of the speech model. These paramaters cannot be identified and quantized exactly; the performance of the predictor is thereby degraded and this could prevent data reduction. In many cases it is desirable to emply a suboptimal predictor in order to simplify the algorithms, and predictor performance is again degraded. This paper develops sensitivity and error analysis as a potential method for determining quantitatively how speech data reduction system performance is degraded by imprecise parameter knowledge or suboptimal filtering. An intended use of the sensitivity and error analysis algorithms is to determine parameter identification and model structure requirements of configuration concepts for adaptive speech digitizers. First, sensitivity and error analysis algorithms are presented that form the basis for the remainder of the work. The algorithms are then used to determine how imprecise knowledge of vocal tract parameters degrades predictor performance in speech. Transversal filters have previously been proposed for this application. The sensitivity analysis algorithms are then used to determine when and by how much the transverse filter is suboptimal to the Kalman filter. In particular, the question of how effectively a higher order of all-pole model approximates a system with zeros is answered, as this question is of considerable importance in speech. Finally, the physical significance of the innovations process in speech data rate reduction is studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号