首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2448篇
  免费   10篇
  国内免费   8篇
航空   1338篇
航天技术   866篇
综合类   19篇
航天   243篇
  2018年   35篇
  2017年   26篇
  2014年   24篇
  2013年   58篇
  2012年   34篇
  2011年   64篇
  2010年   52篇
  2009年   71篇
  2008年   129篇
  2007年   47篇
  2006年   39篇
  2005年   58篇
  2004年   73篇
  2003年   72篇
  2002年   37篇
  2001年   59篇
  2000年   55篇
  1999年   33篇
  1998年   77篇
  1997年   53篇
  1996年   64篇
  1995年   72篇
  1994年   88篇
  1993年   51篇
  1992年   75篇
  1991年   30篇
  1990年   35篇
  1989年   71篇
  1988年   24篇
  1987年   29篇
  1986年   50篇
  1985年   95篇
  1984年   62篇
  1983年   61篇
  1982年   59篇
  1981年   79篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   25篇
  1975年   25篇
  1974年   24篇
  1973年   25篇
  1972年   22篇
  1971年   31篇
  1970年   17篇
  1969年   27篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2466条查询结果,搜索用时 453 毫秒
61.
Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.  相似文献   
62.
In this work we have tracked coronal mass ejections observed with the ground based Mirror Coronagraph for Argentina (MICA) and the Large Angle and Spectroscopic Coronagraph (LASCO) C2 and C3 on board of the Solar and Heliospheric Observatory (SOHO). The MICA telescope is located at El Leoncito (31.8 S, 69.3 W), San Juan (Argentina), since 1997 as part of a bilateral scientific project between Germany and Argentina. SOHO is a project of international cooperation between ESA and NASA. Together these instruments are able to observe the solar corona ranging from 1.05 to 32 solar radii. MICA images the Fe XIV emission line corona and LASCO coronagraphs observe the Thomson scattered white light corona. We have selected events for which there are observations from the three coronagraphs. Using the composite data we were able to obtain height-time diagrams for the corresponding dynamical coronal features traveling outwards in order to determine some of their kinematical properties, i.e., plane of sky velocity and acceleration.  相似文献   
63.
The Di Giovanni/Radicella model (DGR) /1/ determines a bottom side electron densty profile alone from the set of routinely scaled ionogram parameters foE, foF1, foF2 and M(3000)F2 and the total electron content; the smoothed sunspot number R12 appears in the calculation. Present designations are DGR2/2/ and DRR3 /3/ [see Appendix]; they are valid in the northern hemisphere. DGR is compared with electron density profiles derived from ionograms obtained at Juliusruh (54.6°N, 13.4°E), and with the (URSI-based) IRI90 at different conditiones. Experimental total electron content (TEC) data are compared to both models. At the considered station, the profiles obtained by both models are reasonably in agreement amongst themselves and with the experimental data.

The TEC derived from the DGR3 model is in good agreement with experimental TEC, whereas, at high solar activity, IRI90 gives too high TEC values, especially during daytime.  相似文献   

64.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   
65.
66.
An optical design study for a next generation infrared space telescope has been performed. The concept is that of a passively cooled telescope of minium aperture 2.5 metre with an F/1.2 primary and wavelength coverage from = 2 to at least 40 m, and possibly to 100 m. Compactness, low thermal emission from the optics and structure, diffraction limited imaging at = 2 m, and sensitivity to misalignment aberrations and manufacturing errors were the main considerations for this study. Ray tracing results are presented showing the characteristics of the various designs considered. A preliminary investigation of stray light properties is also given. Special emphasis has been placed on the testing of such a fast primary, and optical systems using a lateral shearing interferometer are described for testing both the primary and the primary/secondary combination.  相似文献   
67.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
68.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
69.
The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
  1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
  2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
  相似文献   
70.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号