首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8312篇
  免费   16篇
  国内免费   21篇
航空   3889篇
航天技术   2882篇
综合类   32篇
航天   1546篇
  2021年   78篇
  2019年   50篇
  2018年   175篇
  2017年   116篇
  2016年   116篇
  2015年   55篇
  2014年   188篇
  2013年   241篇
  2012年   227篇
  2011年   352篇
  2010年   254篇
  2009年   361篇
  2008年   431篇
  2007年   240篇
  2006年   172篇
  2005年   214篇
  2004年   222篇
  2003年   252篇
  2002年   167篇
  2001年   252篇
  2000年   159篇
  1999年   182篇
  1998年   231篇
  1997年   140篇
  1996年   208篇
  1995年   239篇
  1994年   241篇
  1993年   154篇
  1992年   196篇
  1991年   71篇
  1990年   70篇
  1989年   190篇
  1988年   76篇
  1987年   74篇
  1986年   99篇
  1985年   236篇
  1984年   179篇
  1983年   158篇
  1982年   154篇
  1981年   267篇
  1980年   78篇
  1979年   69篇
  1978年   69篇
  1977年   56篇
  1975年   68篇
  1974年   56篇
  1972年   52篇
  1971年   58篇
  1970年   49篇
  1969年   49篇
排序方式: 共有8349条查询结果,搜索用时 187 毫秒
121.
Engel KA 《Acta Astronautica》2005,57(2-8):277-287
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.  相似文献   
122.
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.  相似文献   
123.
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles.  相似文献   
124.
125.
Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.  相似文献   
126.
A relatively general formulation for studying the dynamics and control of an arbitrary spacecraft with interconnected flexible bodies has been developed accounting for transient system properties, shift in the center of mass, shear deformations, rotary inertias and geometric nonlinearities. This self-contained, comprehensive, numerical algorithm using system modes is applicable to a large class of spacecraft configurations of contemporary and future interests. Here, versatility of the approach is demonstrated through the dynamics and control studies aimed at the evolving Space Station Freedom.  相似文献   
127.
Moroz  V. I.  Huntress  W. T.  Shevalev  I. L. 《Cosmic Research》2002,40(5):419-445
Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.  相似文献   
128.
The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.  相似文献   
129.
Direct Broadcast Satellites covering large countries such as Canada, require more than one spacecraft, located at different orbital positions, as well as the use of multiple shaped beams. This would minimize eclipse requirements over several time zones, provide increased capacity by frequency reuse and permit the use of cost effective ground receivers.Two such satellites are envisaged, one covering Eastern Canada, the other Western Canada, using two different sets of three highly shaped beams. This paper is the result of a feasibility study of a satellite antenna designed such that while at either orbital location it can be reconfigured in orbit, by ground command and hence can save the cost of one additional spare spacecraft.An offset parabolic reflector is proposed for the 12 GHz downlink, with a switched “dual feed” structure, consisting of two separate but contiguous sets of pyramidal horns and their associated beam forming networks (BFN). Only one BFN set is used at any one orbital location. Detailed radiation patterns demonstrate good beamshaping capabilities, with coverage efficiencies of the order of 94%. Other considerations such as the effect of orbital locations, gain equalization and TWTA standardization are discussed.It is concluded that a satellite, reconfigurable in orbit with a “dual feed” antenna, is feasible and cost effective, for a DBS spare as well as for the main spacecraft.  相似文献   
130.
For Space Transportation System (i.e. Space Shuttle) launched satellites destined for a Geosynchronous Earth Orbit (GEO), there is a need for cost-effective, versatile propulsion systems to provide the perigee burn, i.e. to boost the satellite from Low Earth Orbit (LEO) to Geosynchronous Transfer Orbit (GTO). Surveys of commercial spacecraft activities and future GEO satellite requirements indicate that a spacecraft propulsion system that will provide the perigee burn for a broad range of future commercial satellites would have an excellent market potential.Parametric studies to investigate and define attractive perigee-burn upper propulsion systems (i.e. an Upper Propulsion Stage, or a UPS) are presented. The feasibility and payload capacilities that could be provided by a UPS assembled from essentially off-the-shelf components and subsystems, and the benefits that could be achieved by using major subsystems specifically tailored for the application are presented. The results indicate that attractive UPS configurations can be defined using either off-the-shelf or optimized major subsystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号