首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  国内免费   1篇
航空   41篇
航天技术   63篇
航天   7篇
  2021年   3篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有111条查询结果,搜索用时 234 毫秒
81.
A systematic perturbation scheme is used to study the propagation of a weak shock wave attached to a slender body in a supersonic flow of plasma with thermal radiation and investigate as to how the coupling between the radiative transfer and magneto-hydrodynamic phenomena affects the flow field. The analytical solution of the flow field has been presented up to the second order of ε. The shape of the shock wave attached to the slender body of revolution is obtained, which however can be expressed explicitly in terms of known functions when the radiative decay length is of the same order as the typical body length. Also, the shock angle at the tip of the projectile is obtained.  相似文献   
82.
An analysis of the motion of a single-axis rate gyroscope mounted in a space vehicle which has uncertain time-varying acceleration and deceleration ?x(t) about the output axis of the gyro is presented. Using a Lyapunov function, a condition for boundedness of the gyro motion is derived. It is shown that by a proper selection of the parameters of the gyro, its motion can be forced to remain in a small neighborhood (called region of ultimate boundedness) of the origin in ? - ? plane after a certain finite interval of time for any bounded uncertain ?x(t). Analytical relations for the selection of gyro parameters to keep the error caused in the measurement of the input rate due to ?x within desirable limits are derived.  相似文献   
83.
The ionosphere of Venus is primarily formed by photoionization of a gaseous blanket around Venus. The impact ionization by energetic solar charged particles also plays an important role in the variability of Venusian ionospheric ion, electron density and their temperature profiles. The microscopic variations in the solar wind velocity, particle flux and orientations of frozen-in interplanetary magnetic field determine the solar wind interaction with the Venusian ionosphere. The ion and electron density profiles obtained by Pioneer Venus Orbiter and Pioneer Venus Entry Probes have been analysed in the light of simultaneous solar wind velocity and particle flux. Marked changes in height profiles of ion, electron densities and their temperatures have been found to correlate with the simultaneous changes in the solar wind velocity and particle flux. It is shown that the solar wind plays a more important role in controlling the physical properties and behavior of daytime as well as nighttime ionosphere of Venus, whereas the solar xuv sustains the primary ionization process.  相似文献   
84.
The robust trajectory control of a class of nonlinear systems which can be decoupled by state-variable feedback is considered. It is assumed that the system matrices are unknown but bounded. A nonlinear control law is derived so that the tracking error in the closed-loop system is uniformly bounded and tends to a certain small neighborhood of the origin. The error dynamics are asymptotically decoupled in an approximate sense. The controller includes a reference trajectory generator and uses the integral feedback of the tracking error. On the basis of this result, a flight control system is designed for the control of roll angle, angle of attack, and sideslip in rapid, nonlinear maneuvers of aircraft. Simulation results are presented to show that large, simultaneous lateral and longitudinal maneuvers can be performed in spite of the uncertainty in the stability derivatives  相似文献   
85.
An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law Ud is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law us is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = ud + us.  相似文献   
86.
Nonlinear adaptive and sliding mode flight path control of F/A-18 model   总被引:1,自引:0,他引:1  
The question of inertial trajectory control of aircraft in the three-dimensional space is discussed. It is assumed that the nonlinear aircraft model has uncertain aerodynamic derivatives. The control system is decomposed into a variable structure outer loop and an adaptive inner loop. The outer-loop feedback control system accomplishes (x,y,z) position trajectory and sideslip angle control using the derivative of thrust and three angular velocity components (p,q,r) as virtual control inputs. Then an adaptive inner feedback loop is designed, which produces the desired angular rotations of aircraft using aileron, elevator, and rudder control surfaces to complete the maneuver. Simplification in the inner-loop design is obtained based on a two-time scale (singular perturbation) design approach by ignoring the derivative of the virtual angular velocity vector, which is a function of slow variables. These results are applied to a simplified F/A-18 model. Simulation results are presented which show that in the closed-loop system asymptotic trajectory control is accomplished in spite of uncertainties in the model at different flight conditions.  相似文献   
87.
The author treats the question of control of a class of nonlinear systems using state variable feedback whose input/output map is nearly singular. Although the existing decoupling theory is applicable to such systems, this requires a large amount of control, which may not be permissible. A decoupling approach using state variable feedback in an approximate sense, but requiring a small control magnitude is considered. A decoupling scheme is presented that gives rise to a singularly perturbed system describing the fast dynamics of the control vector. The quasi-steady-state solution of the system gives a control law that decouples the system in an approximate way. The controller includes a servocompensator and a reference trajectory generator. Based on this result, a control law for approximate decoupling of roll angle, angle of attack, and sideslip in rapid, nonlinear airplane maneuvers is derived. Simulated responses of the closed-loop system show that large, simultaneous lateral and longitudinal maneuvers can be accurately performed in spite of uncertainty in stability derivatives  相似文献   
88.
The question of large angle pitch attitude maneuver of satellites using solar radiation pressure is considered. For pitch axis maneuver, two highly reflective control surfaces are used to generate radiation moment. Based on dynamic feedback linearization, a nonlinear control law is derived for large pitch attitude control. In the closed-loop system, the response characteristics of the pitch angle are governed by a fourth-order linear differential equation. Robustness of control system is obtained by the integral error feedback. Simulation results are presented to show that in the closed-loop system, attitude control of the satellite is accomplished in spite of the parameter uncertainty in the system  相似文献   
89.
Random finite sets (RFSs) are natural representations of multitarget states and observations that allow multisensor multitarget filtering to fit in the unifying random set framework for data fusion. Although the foundation has been established in the form of finite set statistics (FISST), its relationship to conventional probability is not clear. Furthermore, optimal Bayesian multitarget filtering is not yet practical due to the inherent computational hurdle. Even the probability hypothesis density (PHD) filter, which propagates only the first moment (or PHD) instead of the full multitarget posterior, still involves multiple integrals with no closed forms in general. This article establishes the relationship between FISST and conventional probability that leads to the development of a sequential Monte Carlo (SMC) multitarget filter. In addition, an SMC implementation of the PHD filter is proposed and demonstrated on a number of simulated scenarios. Both of the proposed filters are suitable for problems involving nonlinear nonGaussian dynamics. Convergence results for these filters are also established.  相似文献   
90.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号