排序方式: 共有76条查询结果,搜索用时 15 毫秒
21.
W. R. Binns M. E. Wiedenbeck M. Arnould A. C. Cummings G. A. de Nolfo S. Goriely M. H. Israel R. A. Leske R. A. Mewaldt G. Meynet L. M. Scott E. C. Stone T. T. von Rosenvinge 《Space Science Reviews》2007,130(1-4):439-449
We have measured the isotopic abundances of neon and a number of other species in the galactic cosmic rays (GCRs) using the
Cosmic Ray Isotope Spectrometer (CRIS) aboard the ACE spacecraft. Our data are compared to recent results from two-component
(Wolf–Rayet material plus solar-like mixtures) Wolf–Rayet (WR) models. The three largest deviations of galactic cosmic ray
isotope ratios from solar-system ratios predicted by these models, 12C/16O, 22Ne/20Ne, and 58Fe/56Fe, are very close to those observed. All of the isotopic ratios that we have measured are consistent with a GCR source consisting
of ∼20% of WR material mixed with ∼80% material with solar-system composition. Since WR stars are evolutionary products of
OB stars, and most OB stars exist in OB associations that form superbubbles, the good agreement of our data with WR models
suggests that OB associations within superbubbles are the likely source of at least a substantial fraction of GCRs. In previous
work it has been shown that the primary 59Ni (which decays only by electron-capture) in GCRs has decayed, indicating a time interval between nucleosynthesis and acceleration
of >105 y. It has been suggested that in the OB association environment, ejecta from supernovae might be accelerated by the high
velocity WR winds on a time scale that is short compared to the half-life of 59Ni. Thus the 59Ni might not have time to decay and this would cast doubt upon the OB association origin of cosmic rays. In this paper we
suggest a scenario that should allow much of the 59Ni to decay in the OB association environment and conclude that the hypothesis of the OB association origin of cosmic rays
appears to be viable. 相似文献
22.
Hubbard GS 《Acta Astronautica》2005,57(2-8):649-660
As we move boldly forward into the 21st century, there has rarely been a more exciting time in which to contemplate the future of space exploration. The President of the United States has made a new and ambitious commitment to exploration of the solar system and beyond. Robotic partners will play a vital role in ensuring that the Vision is truly "sustainable and affordable". Relevant science and technology will be discussed with particular emphasis on expertise from NASA Ames Research Center of which the author is Director. The likely evolution of the balance between human explorers and robotic explorers will be addressed. 相似文献
23.
As computational fluid dynamics matures, researchers attempt to perform numerical simulations on increasingly complex aerodynamic flows. One type of flow that has become feasible to simulate is massively separated flow fields, which exhibit high levels of flow unsteadiness. While traditional computational fluid dynamic approaches may be able to simulate these flows, it is not obvious what restrictions should be followed in order to insure that the numerical simulations are accurate and trustworthy. Our research group has considerable experience in computing massively separated flow fields about various aircraft configurations, which has led us to examine the factors necessary for making high-quality time-dependent flow computations. The factors we have identified include: grid density and local refinement, the numerical approach, performing a time-step study, the use of sub-iterations for temporal accuracy, the appropriate use of temporal damping, and the use of appropriate turbulence models. We have a variety of cases from which to draw results, including delta wings and the F-18C, F-16C, and F-16XL aircraft. Results show that while it is possible to obtain accurate unsteady aerodynamic computations, there is a high computational cost associated with performing the calculations. Rules of thumb and possible shortcuts for accurate prediction of massively separated flows are also discussed. 相似文献
24.
M. Bamsey T. Graham M. Stasiak A. Berinstain A. Scott T. Rondeau Vuk M. Dixon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada’s contribution of the Higher Plant Compartment of the European Space Agency’s MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar “salad machine” (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities. 相似文献
25.
26.
Allamandola Louis J. Bernstein Max P. Sandford Scott A. Walker Robert L. 《Space Science Reviews》1999,90(1-2):219-232
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar
ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence
for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other
possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least
important of the processes considered in determining ice composition. On the other hand, photochemical processing does play
an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory
analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices
produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted
PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
27.
Hawkins S. Edward Darlington E. Hugo Murchie Scott L. Peacock Keith Harris Terry J. Hersman Christopher B. Elko Michael J. Prendergast Daniel T. Ballard Benjamin W. Gold Robert E. Veverka Joseph Robinson Mark S. 《Space Science Reviews》1997,82(1-2):31-100
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration. 相似文献
28.
Viano Oghenekevwe Scott Redmond Michael Hiltz Richard Rembala 《Acta Astronautica》2009,65(11-12):1717-1722
With the installation of a new module and the relocation of three other modules, including multiple hand-offs from the station arm (SSRMS) to the shuttle arm (SRMS), International Space Station (ISS) assembly mission 10A/STS-120 was anticipated to be one of the most complicated ISS assembly missions ever attempted. The assembly operations became even more complex when a solar array wing (SAW) on the relocated Port-6 (P6) truss segment ripped while being extended. Repairing the torn SAW became the single most important objective for the remainder of STS-120, with future ISS assembly missions threatened by reduced power generation capacity if the SAW could not be repaired. Precise coordination between the space shuttle and ISS robotics teams led to an operational concept that combined the capabilities of the SRMS and SSRMS robotic systems in ways far beyond their original design capacities. Benefits of consistent standards for ISS robotic interfaces have been previously identified, but the advantages of having two such versatile and compatible robotic systems have never been quite so spectacular. This paper describes the role of robotics in the emergency SAW repair and highlights how versatility within space robotics systems can allow operations far beyond the intended design scenarios. 相似文献
29.
Scott J.I. Walker Anthony D. McDonald Toshihiko Niki Guglielmo S. Aglietti 《Acta Astronautica》2011,68(7-8):1185-1192
Inflatable technology for space applications is under continual development and advances in high strength fibers and rigidizable materials have pushed the limitations of these structures. This has lead to their application in deploying large-aperture antennas, reflectors and solar sails. However, many significant advantages can be achieved by combining inflatable structures with structural stiffeners such as tape springs. These advantages include control of the deployment path of the structure while it is inflating (a past weakness of inflatable structure designs), an increased stiffness of the structure once deployed and a reduction in the required inflation volume. Such structures have been previously constructed at the Jet Propulsion Laboratory focusing on large scale booms. However, due to the high efficiency of these designs they are also appealing to small satellite systems.This article outlines ongoing research work performed at the University of Southampton into the field of small satellite hybrid inflatable structures. Inflatable booms have been constructed and combined with tape spring reinforcements to create simple hybrid structures. These structures have been subjected to bending tests and compared directly to an equivalent inflatable tube without tape spring reinforcement. This enables the stiffness benefits to be determined with respect to the added mass of the tape springs. The paper presents these results, which leads to an initial performance assessment of these structures. 相似文献