首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4503篇
  免费   11篇
  国内免费   7篇
航空   2106篇
航天技术   1608篇
综合类   16篇
航天   791篇
  2021年   44篇
  2019年   25篇
  2018年   104篇
  2017年   73篇
  2016年   76篇
  2015年   39篇
  2014年   131篇
  2013年   137篇
  2012年   144篇
  2011年   195篇
  2010年   127篇
  2009年   217篇
  2008年   295篇
  2007年   130篇
  2006年   108篇
  2005年   138篇
  2004年   118篇
  2003年   153篇
  2002年   89篇
  2001年   154篇
  2000年   74篇
  1999年   102篇
  1998年   120篇
  1997年   88篇
  1996年   92篇
  1995年   126篇
  1994年   123篇
  1993年   64篇
  1992年   95篇
  1991年   55篇
  1990年   36篇
  1989年   88篇
  1988年   40篇
  1987年   44篇
  1986年   36篇
  1985年   97篇
  1984年   86篇
  1983年   76篇
  1982年   87篇
  1981年   118篇
  1980年   42篇
  1979年   36篇
  1978年   33篇
  1977年   25篇
  1976年   29篇
  1975年   23篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   21篇
排序方式: 共有4521条查询结果,搜索用时 15 毫秒
141.
Mende  S.B.  Heetderks  H.  Frey  H.U.  Stock  J.M.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Habraken  S.  Renotte  E.  Jamar  C.  Rochus  P.  Gerard  J.-C.  Sigler  R.  Lauche  H. 《Space Science Reviews》2000,91(1-2):287-318
Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman- while rejecting the geocoronal `cold Ly-, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly- is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8×10–2 and 1.3×10–2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128×128 pixel matrix over the 15°×15° field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems that use charge division and it has a further advantage that it saturates more gradually at high count rates. The geocoronal Ly- is measured by a three-channel photometer system (GEO) which is a separate instrument. Each photometer has a built in MgF2 lens to restrict the field of view to one degree and a ceramic electron multiplier with a KBr photocathode. One of the tubes is pointing radially outward perpendicular to the axis of satellite rotation. The optic of the other two subtend 60° with the rotation axis. These instruments take data continuously at 3 samples per second and rely on the combination of satellite rotation and orbital motion to scan the hydrogen cloud surrounding the earth. The detective efficiencies (effective quantum efficiency including windows) of the three tubes at Ly- are between 6 and 10%.  相似文献   
142.
Frequency estimation techniques for high dynamic trajectories   总被引:7,自引:0,他引:7  
A comparison is presented of four different estimation techniques applied to the problem of continuously estimating the rapidly varying parameters of a sinusoidal signal, observed in the presence of additive noise. Frequency estimates are emphasized, although phase and/or frequency rate are also estimated by some of the algorithms. These parameters are related to the velocity, position, and acceleration of the maneuvering receiver or transmitter. Estimated performance at low carrier-to-noise ratios and high dynamics is investigated for the purpose of determining the useful operating range of an approximate maximum likelihood estimator, an extended Kalman filter, a cross-product automatic frequency loop and a phase-locked loop. Numerical simulations are used to evaluate performance while tracking a common trajectory exhibiting high dynamics  相似文献   
143.
Lin  Naiguo  Kellogg  P.J.  MacDowall  R.J.  Gary  S.P. 《Space Science Reviews》2001,97(1-4):193-196
Observations of ion acoustic waves in the solar wind during the first and second orbit of the Ulysses spacecraft are presented. The observations show variations of the wave activity with the heliolatitude and with the phase of the solar cycle. The interrelationships between the wave intensity and the electron heat flux and the ratio of electron to proton temperature, T e/T p, are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
144.
145.
In this paper we present new results from the Voyager ultraviolet spectrometers and the IUE spacecraft on V356 Sgr and β Lyr. The V356 Sgr observations cover, in detail, two eclipses and include one IUE high dispersion SWP image. During both eclipses the total strength of the UV emission lines were found to be invariant. Also, an uneclipsed UV continuum was detected at wavelengths shorter than 1600 Å. The IUE high dispersion SWP spectrum revealed that the emission lines are extremely broad, almost symmetrical lines with weak, slightly blue shifted absorption components. No evidence of carbon is seen in the emission or absorption spectrum of V356 Sgr in eclipse. A model for the origin of the circumstellar matter in this binary system is presented. The Voyager ultraviolet observations of β Lyr show a strong far-UV continuum that is detectable down to 912 Å The far-UV continuum flux level was variable on time scales shorter than the orbital period and displayed no obvious orbital modulation or eclipses. The spectral shape of the far-UV continuum closely resembles that of a UX UMa type cataclysmic variable. On 16 August 1985 an rapid brightening of the far-UV continuum was observed which was also reminiscent of cataclysmic variables. Analysis of the β Lyr data suggest that the central object must be small, with a radius on the order of 1 R or less.  相似文献   
146.
Error Analysis of Space-Stable Inertial Navigation Systems   总被引:1,自引:0,他引:1  
The error equations for a space-stable inertial navigation system are derived. This is done by directly perturbing the mechanization equations in the inertial frame and then transforming in open-loop fashion to the local-level frame. A rotating inertial platform and velocity and altitude damping are considered. The relations between errors in space-stable and local-level systems are noted. Numerical results are presented for certain random error sources.  相似文献   
147.
The performance evaluation of multiple-hypothesis, multitarget tracking algorithm is presented. We are primarily interested in target-detection/track-initiation capabilities as measures of performance. Through Monte Carlo simulations, a multiple-hypothesis tracking algorithm was evaluated in terms of 1) probability of establishing a track from target returns and 2) false track density. A radar was chosen as the sensor, and a general multiple-hypothesis, multitarget tracking algorithm was used in the Monte Carlo simulations. The simulation results predict the probability of establishing a track from returns of a target as well as the false track density per scan volume per unit time. The effects of the target radar cross section and the radar power, measured through the mean signal-to-noise ratio (SNR) were studied, as were the effects of detection threshold and track quality threshold. Computational requirements were also investigated  相似文献   
148.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   
149.
Fahr  H. J.  Neutsch  W.  Grzedzielski  S.  Macek  W.  Ratkiewicz-Landowska  R. 《Space Science Reviews》1986,43(3-4):329-381
Existing heliopause models are critically rediscussed under the new aspect of possible plasma mixing between the solar wind and the ambient ionized component of the local interstellar medium (LISM). Based on current kinetic plasma theories, effective diffusion rates across the heliopause are evaluated for several models with turbulence caused by electrostatic or electromagnetic interactions that could be envisaged in this context. Some specific cases that may lead to high diffusion rates are investigated, especially in regard to their LISM magnetic field dependence.For weak fields (less than 10–7 G), macroscopic hydrodynamic instabilities, such as of Rayleigh-Taylor or Kelvin-Helmholtz-types, can be excited. The resulting plasma mixing rates at the heliopause may amount to 20–30% of the impinging mass flow.Recently, an unconventional new approach to the problem for the case of tangential magnetic fields at the heliopause was published in which a continuous change of the plasma properties within an extended boundary layer is described by a complete set of two-fluid plasma equations including a hybrid MHD-formulation of wave-particle interaction effects. If a neutral sheet is assumed to exist within the boundary layer, the magnetic field direction is proven to be constant for a plane-parallel geometry. Considering the electric fields and currents in the layer, an interesting relationship between the field-reconnection probability and the electric conductivity can be derived, permitting a quantitative determination of either of these quantities.An actual value for the electrical conductivity is derived here on the basis of electron distribution functions given by a superposition of Maxwellians with different temperatures. Using two-stream instability theory and retaining only the most unstable modes, an exact solution for the density, velocity, and magnetic and electric fields can be obtained. The electrical conductivity is then shown to be six orders of magnitude lower than calculated by conventional formulas. Interestingly, this leads to an acceptable value of 0.1 for the reconnection coefficient.By analogy with the case of planetary magnetopauses, it is shown here for LISM magnetic fields of the order of 10–6 G or larger that field reconnection processes may also play an important role for the plasma mixing at the heliopause. The resulting plasma mixing rate is estimated to amount to an average value of 10% of the incident mass flow. It is suggested here that the dependence of the cosmic-ray penetration into the heliosphere on the distribution of reconnecting areas at the heliopause may provide a means of deriving the strength and orientation of the LISM field.A series of observational implications for the expected plasma mixing at the heliopause is discussed in the last part of the paper. In particular, consequences are discussed for the generation of radio noise at the heliopause, for the penetration of LISM neutrals into the heliosphere, for the propagation of cosmic rays towards the inner part of the solar system and for convective electric field mergings into the heliosphere during the course of the solar cycle, depending on the solar cycle variations. With concern to a recent detection of electrostatic plasma waves by plasma receivers on Voyagers 1 and 2, we come to an interesting alternate explanation: the heliopause, rather than the heliospheric shock front, could be responsible for the generation of these waves.  相似文献   
150.
A unique method of determining a satellite's antenna direction error, which includes the effects of sensor-errors, reflector thermal distortion, etc., was developed. The principle of the method is to apply a nonlinear least squares method to variations in signal strength received simultaneously at various ground stations to obtain the movement of a premeasured antenna gain pattern. Applying this method to the Japanese medium-scale broadcast satellite for experimental purposes, the system's capability and usefulness were confirmed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号