首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  国内免费   1篇
航空   41篇
航天技术   63篇
航天   7篇
  2021年   3篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
41.
A method of wavefront analysis is used to analyze the formation of shock waves in a two-dimensional steady supersonic flow past plane and axisymmetric bodies in radiative magnetogasdynamics. The gas is assumed to be perfectly conducting and to be permeated by a magnetic field orthogonal to the trajectories of the gas particles. The medium is taken to be sufficiently hot for the effects of thermal radiation to be significant, which is treated by the optically thin approximation to the radiative transfer equation. Transport equations, which lead to the determination of the distance at which the first characteristic could intersect with a successive one and also to conditions, which insure that no shock will ever evolve on the wave front, are derived. The effect of upstream flow Mach number and the magnetic field strength on the behavior of the wavefront are examined.  相似文献   
42.
Results pertaining to the response of the low latitude ionosphere to a major geomagnetic storm that occurred on 24 August 2005 are presented. The dual frequency GPS data have been analyzed to retrieve vertical total electron content at two Indian low latitude stations (IGS stations) Hyderabad (Geographic latitude 17°20′N, Geographic longitude 78°30′E, Geomagnetic latitude 8.65°N) and Bangalore (Geographic latitude 12°58′N, Geographic longitude 77°33′E, Geomagnetic latitude 4.58°N). These results show variation of GPS derived total electron content (TEC) due to geomagnetic storm effect, local low latitude electrodynamics response to penetration of high latitude convection electric field and effect of modified fountain effect on GPS–TEC in low latitude zone.  相似文献   
43.
Results from a study of high resolution spectra obtained with the Chandra X-ray observatory for a sample of 6 Cataclysmic Variables (CVs) are presented. A global fit approach has been employed to obtain the spectral characteristics of the sources. The line-rich high-resolution spectra of these sources clearly indicate multi-temperature nature of the emitting plasma. Multi-temperature APEC models describe the spectra very well. Detection of significantly broad emission lines, indicates the presence of high velocity gas in SS Cyg and U Gem during the optical outbursts.  相似文献   
44.
We present the analysis of archival Chandra high resolution X-ray spectra of AM Her. Emission lines from several hydrogen-like ions, helium-like ions, Fe-L shell transitions and Fe-K fluorescent are identified. Using the resonance, intercombination and forbidden lines of the few prominent helium-like ions, we infer a density greater than 2 × 1012 cm−3 and a temperature of 2 MK for the oxygen and neon line emitting regions in the accretion column of AM Her.  相似文献   
45.
Laboratory characterization of dielectric properties of terrestrial analogues of lunar soil (JSC-1A) and comparison with lunar samples returned from various Apollo missions is made at different as well as normalized bulk density. Here measurements of dielectric constants and losses were made at four microwave frequencies such as 1.7 GHz, 2.5 GHz, 6.6 GHz and 31.6 GHz. Complex permittivity of lunar simulant was measured at temperature ranging from −190 °C to + 200 °C using Wave-Guide cell method. Comparison of permittivity of JSC-1A with Apollo sample also has been done at similar microwave frequencies. The investigations reveal that dielectric constant and loss factor of terrestrial analogues of lunar soil are temperature dependent. As temperature is gradually increased both these parameter (storage factor and loss factor) also gradually increases. These temperatures were chosen because the Moon undergoes at that extremes level of temperature. It is scorching heat at 110 °C during the day and freezing cold at −180 °C during night. The measured value of ε can be useful for designing passive as well as active sensors.  相似文献   
46.
The solar eclipse of 15 January 2010 was an annular eclipse of the Sun with a maximum magnitude of 0.96 at 1.62°N, 69.29°E. To study the effect of this solar eclipse on the ionosphere the GPS data recorded at three different Indian stations Varanasi (Geographic latitude 25°, 16′N, longitude 82°, 59′E), Hyderabad (Geographic latitude 17°, 20′N, longitude 78°, 30′E) and Bengaluru (Geographic latitude 12°, 58′N, longitude 77°, 33′E) have been used to retrieve ionospheric total electron content (TEC). The ionospheric response to this rare event has been studied in terms of GPS-derived TEC observed at all the three Indian stations. A significant reduction in TEC reflected by all PRNs at all the three stations has been observed. The magnitude of the reduction in VTEC compared to quiet mean VTEC depends on latitude as well as longitude. The amount of reduction observed from different satellites (PRN) is different and depends on the location of the satellite from the solar eclipse path.  相似文献   
47.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   
48.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   
49.
The source region and propagation mechanism of low latitude whistlers (Geomag. lat. <30°) have puzzled scientific community for last many decades. In view of recent reports, there is consensus on the source region of low latitude whistlers in the vicinity of the conjugate point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200–1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.  相似文献   
50.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号