首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
  国内免费   3篇
航空   49篇
航天技术   8篇
综合类   1篇
航天   18篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   1篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   5篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有76条查询结果,搜索用时 0 毫秒
71.
Marklund  Göran  André  Mats  Lundin  Rickard  Grahn  Sven 《Space Science Reviews》2004,111(3-4):377-413
The success of the Swedish small satellite program, in combination with an active participation by Swedish research groups in major international missions, has placed Sweden in the frontline of experimental space research. The program started with the development of the research satellite Viking which was launched in 1986, for detailed investigations of the aurora. To date, Sweden has developed and launched a total of six research satellites; five for space plasma investigations; and the most recent satellite Odin, for research in astronomy and aeronomy. These fall into three main categories according to their physical dimension, financial cost and level of ambition: nano-satellites, micro-satellites, and mid-size satellites with ambitious scientific goals. In this brief review we focus on five space plasma missions, for which operations have ended and a comprehensive scientific data analysis has been conducted, which allows for a judgement of their role and impact on the progress in auroral research. Viking and Freja, the two most well-known missions of this program, were pioneers in the exploration of the aurora. The more recent satellites, Munin, Astrid, and Astrid-2 (category 1 and 2), proved to be powerful tools, both for testing new technologies and for carrying out advanced science missions. The Swedish small satellite program has been internationally recognized as cost efficient and scientifically very successful.  相似文献   
72.
Since the turn of the century, experiments have produced laboratory fluid dynamos that enable a study of the effect in controlled conditions. We review here magnetic induction processes that are believed to underlie dynamo action, and we present results of these dynamo experiments. In particular, we detail progress that have been made through the study of von Kármán flows, using gallium or sodium as working fluids.  相似文献   
73.
The BepiColombo Laser Altimeter (BELA) has been selected to fly on ESA?s BepiColombo mission to Mercury. The instrument will be the first European laser altimeter designed for interplanetary flight. This paper describes the setup used to characterize the angular movements of BELA under the simulated environmental conditions that the instrument will encounter when orbiting Mercury. The system comprises a laser transmitter and a receiving telescope, which can move with respect to each other under thermal load. Tests performed using the Engineering Qualification Model show that the setup is accurate enough to characterize angular movements of the instrument components to an accuracy of ≈10 μrad. The qualification instrument is thermally stable to operate during all mission phases around Mercury proving that the transmitter and receiver sections will remain within the alignment requirements during its mission.  相似文献   
74.
Toward a global space exploration program: A stepping stone approach   总被引:1,自引:0,他引:1  
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.  相似文献   
75.
76.
In the search for aqueous habitats on Mars direct proof of (ancient) flowing water is still lacking, although remote sensing has provided indications of young fluvial systems. To demonstrate that such proof can be given, we examined surface marks on recent terrestrial sand grains by atomic force microscopy (AFM) and applied a quantitative three-dimensional analysis that can numerically distinguish between aeolian and aquatic transport mechanisms in sedimentary deposits on Earth. The surfaces of natural quartz grains as well as olivine, feldspar pyroxene, and monazite sands of known origin were imaged, each image yielding a three-dimensional map of the mineral surface. A fully automated analysis of distribution patterns of the structural elements that constitute the grain surfaces shows that wind-transported quartz grains have short linear elements irregularly distributed on the surface. Linear elements on water-transported grains, however, are longer with orientations that reflect the mineral symmetry. Because the surface patterns found on aqueous grains are due to preferential etching, they can be used as diagnostic fingerprints for the existence of past or present aqueous transport systems. We used a cluster analysis of the cross-correlation distance of distribution patterns in the structures of aeolian and aquatic sand grains to build a phenogram that provides a map for the relationship of the various sediments found on earth. The analysis shows that the method is highly significant and that water and wind transport can clearly be differentiated. In particular, feldspar and olivine sands contributed even more to the discrimination than quartz grains, which indicated that the method is promising for its application on future missions to Mars. Assuming that martian aqueous sand grains exhibit similar erosional patterns to mineral grains on Earth, simple AFM experiments on a Mars lander would be capable of proving the activity of flowing water in modern runoff systems and of analyzing the paleoenvironments of Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号