首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   2篇
  国内免费   2篇
航空   108篇
航天技术   61篇
航天   102篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   11篇
  2017年   5篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   14篇
  2011年   30篇
  2010年   14篇
  2009年   18篇
  2008年   19篇
  2007年   12篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   12篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1973年   2篇
  1963年   1篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
201.
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.  相似文献   
202.
With ongoing progress in space technology, questions of its potential for the modification of weather and climate phenomena (often summarized by the term ‘geoengineering’) ranging from small-scale severe weather events to mitigation of effects caused by global climate change and ozone depletion have become popular. This paper reviews the current state of scientifically based studies in this context and attempts to provide a basis for an assessment of geoengineering efforts with respect to technological, economic and fundamental scientific aspects. The overview indicates that the current state of knowledge about climate variability as a consequence of natural and anthropogenic influences is sufficient to classify geoengineering solutions as highly risky and their consequences as extremely difficult to predict. Even on smaller scales and with less complexity of interacting processes, only very limited boundary conditions, i.e. a narrow range of atmospheric variability and land surface topography favouring the intended alteration, seem to justify weather modification. Moreover, as for systems reaching scales of large organized storms and hurricanes, required energy and control resources are well beyond existing capabilities. Consequently, the use of space technology for provision of better information on environmental change and integration of remote sensing data into weather and climate models forecasts is supported.  相似文献   
203.
204.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   
205.
The boundary conditions for a non-destructive sample acquisition system are outlined and the development of a new robotic sampling system suited for use on a cometary surface is briefly discussed. Additionally we present some new results on strength and deformation behaviour of synthetic cometary analogue material.  相似文献   
206.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   
207.
This study reports on observations of large-scale atmospheric gravity waves/traveling ionospheric disturbances (AGWs/TIDs) using Global Positioning System (GPS) total electron content (TEC) and Fabry–Perot Interferometer’s (FPI’s) intensity of oxygen red line emission at 630?nm measurements over Svalbard on the night of 6 January 2014. TEC large-scale TIDs have primary periods ranging between 29 and 65?min and propagate at a mean horizontal velocity of 749–761?m/s with azimuth of 345–347° (which corresponds to poleward propagation direction). On the other hand, FPI large-scale AGWs have larger periods of 42–142?min. These large-scale AGWs/TIDs were linked to enhanced auroral activity identified from co-located all-sky camera and IMAGE magnetometers. Similar periods, speed and poleward propagation were found for the all-sky camera (60–97?min and 823?m/s) and the IMAGE magnetometers (32–53?min and 708?m/s) observations. Joule heating or/and particle precipitation as a result of auroral energy injection were identified as likely generation mechanisms for these disturbances.  相似文献   
208.
209.
A Newton-type method is proposed to improve the accuracy of control for relative motion of two satellites in close formation. We assume that the deputy satellite is equipped with a passive attitude control system that provides one-axis stabilization, and one or two orbit control thrusters are installed along the stabilized axis. Previous studies show that it is possible to construct periodic relative trajectories both in case of passive magnetic and spin stabilization. However, the accuracy of the numerically obtained control is quite low due to modeling errors caused by linearization of the equations of relative motion. Therefore, a correction procedure is required to compensate for nonlinear effects. To this end we suggest a recently developed algorithm based on the Newton method for solving nonlinear systems with geometric constraints. Being implemented, this algorithm allows decreasing the modeling error by up to ten times. The previously found control and trajectory of the linearized system are used as initial approximations.  相似文献   
210.
A direct fusion drive for rocket propulsion   总被引:1,自引:0,他引:1  
The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium–helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma?s Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun–Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号