首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
航空   16篇
航天技术   3篇
航天   3篇
  2018年   1篇
  2017年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1989年   2篇
  1980年   2篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
11.
Using magnetometer and electron observations from the Mars Global Surveyor (MGS) and the Wind spacecraft we show that the region of magnetic field pile-up and density decrease located between the Martian ionosphere and bow shock exhibit strong similarities with the plasma depletion layer (PDL) observed upstream of the Earth's magnetopause in the absence of magnetic reconnection when the magnetopause is a solid obstacle in the solar wind. A PDL is formed upstream of the terrestrial magnetopause when the magnetic field piles up against the obstacle and particles in the pile-up region are squeezed away from the high magnetic pressure region along the field lines as the flux tubes convect toward the magnetopause. We here discuss the possibility that at least part of the region of magnetic field pile-up and density depletion upstream of Mars may be formed by the same physical processes which generate the PDL upstream of the Earth's magnetopause. More complete ion, electron, and neutral measurements are needed to conclusively determine the relative importance of the plasma depletion process versus exospheric processes.  相似文献   
12.
We report here on the science case of a concept for a satellite orbiting at 1 AU from the Sun and using a baffled Fizeau interferometer to look as close as possible to its limb. This configuration, and the need for looking nearby the Sun, is required for the main scientific driver of the mission, namely the measure of the γ parameter of the Parameterized Post-Newtonian formulation to the 10−6–10−7 level at least. This would lead to an accurate test of the General Theory of Relativity against other alternative theories of gravity, and set stringent constraints on some of the most significant issues of Astrophysics like those involving exotic forms of dark matter and dark energy. Exploiting the possibilities offered by the observation strategy, it is also possible to target other interesting scientific goals. One is, again, in the realm of General Relativity and aims at measuring the light deflection nearby the Giant Planets to detect asymmetric effects induced by their quadrupoles, predicted by GR but never measured so far. Others can be found in the observation of selected extrasolar systems where, e.g., the astrometric and photometric capabilities of GAME will help to improve on the knowledge of the brown-dwarf regime and on the search for exo-planets with the transit method, respectively.  相似文献   
13.
The radio telescope MEXART was developed to make observations of interplanetary scintillation (IPS) produced by large scale disturbances associated with solar events. In this work it is shown that on occasion there are disturbances in the ionosphere that are related with these events and which cannot only contaminate the IPS but actually be the main contribution to the observed oscillations. This was the case of the event of 15 December 2006 observed by MEXART, which presented clear scintillation. The total electron content (TEC) of the ionosphere above Mexico was calculated for the same period. It was found that the variations in TEC were associated with the scintillations detected by MEXART.  相似文献   
14.
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.  相似文献   
15.
16.
A two dimensional hydrodynamic study indicates that convectively unstable gradients which develop during core collapse and bounce give rise to large scale core overturn. It is also shown that the concomitant release of neutrini can deposit large amounts of energy and momentum in the infalling envelope and give rise to a powerful supernova explosion.  相似文献   
17.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
18.
Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (~500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.  相似文献   
19.
The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.  相似文献   
20.
Recent discoveries of planets orbiting several nearby solar-mass stars have focussed renewed attention on the frequency and evolution of planetary systems and their evolutionary precursors around both solar and intermediate (2 M/M 8) mass stars. As a result of a wealth of new observations at all wavelengths of the circumstellar material around the nearest of the young intermediate-mass stars, the so-called Herbig Ae/Be (HAeBe) stars, we are beginning to see how these systems are similar to the solar mass objects, and how they differ. A review of the recent literature is presented, including the evolutionary status of the stars, binary frequency and the star forming environment, the morphology of the circumstellar material, including the first direct detections of disks in Keplerian rotation around these objects, and mass loss and infall phenomena. Prospects for advances in this research area as a result of advances in instrumentation are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号