首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8879篇
  免费   10篇
  国内免费   36篇
航空   4275篇
航天技术   3061篇
综合类   198篇
航天   1391篇
  2021年   74篇
  2019年   50篇
  2018年   153篇
  2017年   93篇
  2016年   85篇
  2014年   167篇
  2013年   218篇
  2012年   218篇
  2011年   320篇
  2010年   212篇
  2009年   361篇
  2008年   400篇
  2007年   226篇
  2006年   190篇
  2005年   228篇
  2004年   234篇
  2003年   287篇
  2002年   272篇
  2001年   327篇
  2000年   181篇
  1999年   224篇
  1998年   263篇
  1997年   188篇
  1996年   243篇
  1995年   300篇
  1994年   267篇
  1993年   148篇
  1992年   222篇
  1991年   96篇
  1990年   98篇
  1989年   223篇
  1988年   88篇
  1987年   89篇
  1986年   100篇
  1985年   274篇
  1984年   208篇
  1983年   183篇
  1982年   215篇
  1981年   256篇
  1980年   91篇
  1979年   67篇
  1978年   81篇
  1977年   60篇
  1976年   63篇
  1975年   69篇
  1974年   70篇
  1972年   64篇
  1971年   60篇
  1970年   54篇
  1969年   53篇
排序方式: 共有8925条查询结果,搜索用时 15 毫秒
121.
122.
The fine structure of the Auroral Kilometric Radiation (AKR) is studied using multicomponent measurements of the electric component of the electromagnetic field in the frequency band 4 kHz–1 MHz (the POLRAD experiment onboard the INTERBALL-2 satellite). Special attention is paid to the measurements near the source of the AKR: under conditions when the lower boundary of the emission range descended sufficiently low, down to the local gyrofrequency of electrons. From the analysis of the electric field structure the conclusion is drawn that the bulk of the AKR power is carried by the signal component fast variable in time and frequency (flickering component). The power of a constant component (continuum) is lower by at least an order of magnitude. During strong bursts of the AKR, the relative contribution of the flickering component increases. The spatial structure of the zone of generation has at least three characteristic scales along and across the magnetic field.  相似文献   
123.
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit.  相似文献   
124.
Japanese treefrogs (Hyla japonica) are planned to be sent to the space station MIR. Experimental system was developed to observe their behaviors under microgravity.  相似文献   
125.
This paper considers the problem of locating a stationary coherent emitter via a single moving platform making frequency measurements in the presence of aperture state uncertainty. It is shown that the estimated emitter location is most sensitive to the receiving aperture velocity uncertainty. The required aperture velocity accuracy is determined through a noninfinitesimal perturbation analysis. A solution to location accuracy enhancement with a minimal hardware addition is attempted. It is shown that this can be achieved by mounting a high-resolution tri-axis microelectromechanical systems (MEMS) accelerometer at the aperture to measure its velocity, which can deviate significantly from that estimated by the on-board navigation system. The Doppler shifts of the GPS signal carrier frequency, whenever it can be acquired through the aperture, are also considered as a way to aid the aperture velocity measurement. A decentralized, federated processing method for the aperture velocity estimate referenced at the aperture, integrating all measurement data, is presented. An upper bound for the error of aperture velocity estimate is derived. The potential for significant accuracy enhancement for emitter location is demonstrated.  相似文献   
126.
Electric power anomalies or disturbances can disrupt the normal operation of equipment, accelerate aging, or even cause outright failures thus resulting in increased costs of maintenance and reduced system reliability. Past research on the effects caused by power anomalies has been mostly focused on industrial, commercial, or residential systems, or on power distribution equipment. A literature survey reveals that there is no comprehensive review related to low-voltage (LV) power systems and utilization equipment applicable to military combat vehicles, such as aircraft and ships. This paper summarizes the results of a new literature survey that focused on the causes, effects, and mitigation methods for power anomalies typical of LV mobile power systems. Electric power anomaly cost data collected from the literature are also presented, from which the costs of anomalies to the national defense are estimated using some simple rationales.  相似文献   
127.
We discuss autonomous car navigation based on updating dead reckoning (DR) by road profile recognition (RPR). The navigation system requires sensors to detect changes in altitude and driving direction which are installed in modern cars for different purposes (e.g. ABS sensors). The layout of the navigation system is discussed and simulations are carried out over driving distances of approximately 150 km on the basis of realistic road data and ordinary sensor accuracies. Positioning errors of lower than 10 m (standard deviation) are observed. To achieve this accuracy the synchronization error between measured and mapped data must be continually estimated. The introduced navigation method is ideal to complete present commercial car navigation systems using Navstar GPS.  相似文献   
128.
A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30-60% of the capacity of lithium ion cells may be restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells  相似文献   
129.
Daily Be-7 concentrations in air at the height of 15 m are continuously observed at 38°15.2′N, 140°20.9′E, between 2000 and 2001. The average concentration and the relative standard deviation were 4.0 mBq/m3 and 50% in 2000–2001, respectively. The Be-7 concentrations increased 2.5% with the decrease in the sunspot numbers by 6.7% for the term of two years. From the power spectral analysis, the periodicity of 26 days is shown for the daily Be-7 concentrations. The folding analysis indicates that the time variation of the Be-7 concentration is similar to that of the ground-based neutron counting rate, and the phase delay for the minimum portion of Be-7 concentration was roughly 8 days to the maximum sunspot number. These results indicate that the Be-7 concentrations in the air at ground level have 26 day periodicity as a component of time variations and the time variation is caused by the solar modulation of galactic cosmic rays, which corresponds to the variation of the sunspot number due to the rotation of the sun.  相似文献   
130.
P. Hartl  M. Wlaka 《Space Policy》1996,12(3):167-175
Space technology revolutionizes navigation. It will become the method for any task of position, velocity, range determination and time distribution. The existing navigation satellite systems of the USA (GPS) and of Russia (GLONASS) are military systems. They only partly meet the requirements of civil safety critical applications. A global civil navigation satellite system (GNSS) is required. The European Union (EU) has recognized the importance of satellite based navigation and its role for transportation in general and for the development of the Trans-European Network (TEN) in particular. It has therefore decided to become a major partner in the development of the GNSS. In this article a concept is proposed which starts with a European regional segment (ENSS) as an element for the integrated global system. This concept requires the establishment of international standards to enable seamless global service. It has the advantage of meeting both the particular demands of regions and civil user groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号