首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
航空   21篇
航天技术   9篇
航天   23篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2001年   1篇
  2000年   2篇
  1997年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1978年   4篇
  1976年   1篇
  1972年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
21.
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between ?0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, ?7.5±0.4 ‰/amu for Mg, ?8.9±0.6 ‰/amu for Si, and ?22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δm/m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   
22.
What is it about the Moon that captures the fancy of humankind? A silvery disk hanging in the night sky, it conjures up images of romance and magic. It has been counted upon to foreshadow important events, both of good and ill, and its phases for eons served humanity as its most accurate measure of time. This paper discusses the Moon as a target for human exploration and eventual settlement. This paper will explore the more than 50-year efforts to reach the Moon, succeeding with space probes and humans in Project Apollo in the 1960s and early 1970s. It will then discuss the rationales for spaceflight, suggesting that human space exploration is one of the least compelling of all that might be offered. The paper will then discuss efforts to make the Moon a second home, including post-Apollo planning, the Space Exploration Initiative, and problems and opportunities in the 2004 Vision for Space Exploration, and cancellation of that program in 2010.  相似文献   
23.
Roger X. Lenard   《Space Policy》2001,17(4):285-289
The development and exploitation of nuclear power and propulsion represent certain didactic imperatives for human civilization. Among these are economic, epistemological, moral and commercial propositions. Developing space nuclear power and propulsion represents one future; the choice of not to pursue the course barring some breakthrough in physics represents a dramatically different future. The author argues that the time is now fortuitous for deployment and operation of nuclear propulsion and power, primarily nuclear electric propulsion, at significant levels, employing figures of merit that transcend simple cost models used to justify nuclear power sources in the past. The proposition is examined, in the light of US and UN restrictions, to ascertain how best to proceed. The author argues that viewpoints of certain vocal albeit uninformed public interest groups are typically self-serving and generally categorically incorrect; it can be asserted that these same groups do not truly represent the public interest at all. It is, therefore, necessary to present an even-handed assessment of both sides of the argument to determine the virtues and liabilities of embarking on such a developmental path. Given the imperatives mentioned, the author argues that nuclear power and propulsion for space systems is a societal necessity.  相似文献   
24.
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.  相似文献   
25.
Preface     
  相似文献   
26.
At the beginning of the GEOS lifetime, some attempts have been made for taking advantage of the passes over Alaska. GEOS was then commanded in a fixed mode and the corresponding telemetry data were recorded at the NASA stations. For two passes over Jim Creek (48°2N–121°9W) where a powerful VLF transmitter (f 0 = 18.6 kHz) is located, GEOS was put in a specific mode in order to study the magnetospheric electromagnetic field in the vicinity of f 0. The results of one pass (June 11, from 0755 UT) are presented here.During this pass, a strong enhancement of all the e.m. components at f 0 has been observed for a specific period of time, when GEOS was very near to the exact conjugacy with NKL. The distance, as measured on the ground, over which the signal was above -6 dB from the maximum is of the order of 800 km. During the corresponding period of time (0740–0750 UT), the satellite altitude varied between 8000 and 6000 km. The magnetospheric region where the signal is strong appears to be structured, as if there were many ducts.Preliminary results concerning the polarization characteristics of the signal are presented. In the absence of precise measurements of these characteristics, the comparison between the electric and magnetic components of the received signal is not easy to interpret. An examination of the onboard computed correlograms (in the frequency range from f 0 -0.6 kHz to f 0 +3.3 kHz) shows that, for this pass, no VLF emissions were triggered by NKL, at the altitude of the satellite.  相似文献   
27.
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.  相似文献   
28.
The conventional wisdom holds that the Space Shuttle programme has been a ‘policy failure’ because NASA compromised its original concept in the face of weak political commitment and inadequate funding. However, a detailed reappraisal of the history shows that this reasoning is ambiguous, counterfactual and contrary to experience. Congressional and presidential support for the Shuttle has consistently been generous despite flawed and shifting justifications for the programme advanced by NASA. Among the lessons to be learned are the need for more rigorous congressional oversight and the development of smaller, quicker and independent civil space programmes.  相似文献   
29.
An examination of the high latitude performance of the bottomside and topside F-layer parameterizations of the NeQuick electron density model is presented using measurements from high latitude ionosonde and Incoherent Scatter Radar (ISR) facilities.For the bottomside, we present a comparison between modeled and measured B2Bot thickness parameter. In this comparison, it is seen that the use of the NeQuick parameterization at high latitudes results in significantly underestimated bottomside thicknesses, regularly exceeding 50%. We show that these errors can be attributed to two main issues in the NeQuick parameterization:(1) through the relationship relating foF2 and M3000F2 to the maximum derivative of F2 electron density, which is used to derive the bottomside thickness, and (2) through a fundamental inability of a constant thickness parameter, semi-Epstein shape function to fit the curvature of the high latitude F-region electron density profile.For the topside, a comparison is undertaken between the NeQuick topside thickness parameterization, using measured and CCIR-modeled ionospheric parameters, and that derived from fitting the NeQuick topside function to Incoherent Scatter Radar-measured topside electron density profiles. Through this comparison, we show that using CCIR-derived foF2 and M3000F2, used in both the NeQuick and IRI, results in significantly underestimated topside thickness during summer periods, overestimated thickness during winter periods, and an overall tendency to underestimate diurnal, seasonal, and solar cycle variability. These issues see no improvement through the use of measured foF2 and M(3000)F2 values. Such measured parameters result in a tendency for the parametrization to produce a declining trend in topside thickness with increasing solar activity, to produce damped seasonal variations, and to produce significantly overestimated topside thickness during winter periods.  相似文献   
30.
We analyse the inter-boresight angles (IBA) measured by the star trackers on board the GOCE satellite and find that they exhibit small offsets of 7–9″ with respect to the ones calculated from the rotation of the star tracker reference frames to the satellite reference frame. Further, we find small variations in the offsets with a peak-to-peak amplitude of up to 8″, which correlate with variations of the star trackers’ temperatures. Motivated by these findings, we present a method for combining the attitude quaternions measured by two or more star trackers that includes an estimation of relative attitude offsets between star trackers as a linear function of temperature. The method was used to correct and combine the star tracker attitude quaternions within the reprocessing of GOCE data performed in 2018. We demonstrate that the IBA calculated from the corrected star tracker attitude quaternions show no significant offsets with respect to the reference frame information. Finally, we show that neglecting the star tracker attitude offsets in the processing would result in perturbations in the gravity gradients that are visible at frequencies below 2?mHz and have a magnitude of up to 90?mE. The presented method avoids such perturbations to a large extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号