首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   1篇
  国内免费   2篇
航空   154篇
航天技术   81篇
综合类   3篇
航天   161篇
  2021年   3篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   7篇
  2011年   38篇
  2010年   15篇
  2009年   31篇
  2008年   19篇
  2007年   19篇
  2006年   19篇
  2005年   12篇
  2004年   7篇
  2003年   17篇
  2002年   9篇
  2001年   5篇
  2000年   15篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1991年   4篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   12篇
  1985年   16篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1970年   2篇
  1968年   6篇
  1967年   7篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有399条查询结果,搜索用时 31 毫秒
111.
Ellis  John  Ferstl  Andrew  Olive  Keith A. 《Space Science Reviews》2002,100(1-4):235-246
Direct and indirect dark matter detection relies on the scattering of the dark matter candidate on nucleons or nuclei. Here, attention is focused on dark matter candidates (neutralinos) predicted in the minimal supersymmetric standard model and its constrained version with universal input soft supersymmetry-breaking masses. Current expectations for elastic scattering cross sections for neutralinos on protons are discussed with particular attention to satisfying all current accelerator constraints as well as insuring a sufficient cosmological relic density to account for the dark matter in the universe.  相似文献   
112.
Summary The most striking aspect of the Cep and 53 Per stars is their complexity. Whereas in Cepheid-type variables, a dominant mechanism excites a dominant mode (or two at most) of a dominant kind of pulsation, in Cep stars, a number of mechanisms and processes are at work. Still there is hope that the mystery will soon be unraveled by the careful application of a combination of observational and theoretical techniques. These same techniques will provide a better understanding of B stars in general: their interior and atmosphere, mass loss and coronal heating.  相似文献   
113.
A decade of intense scientific study of Titan is reviewed. The atmosphere is not well understood at the time of this writing, but it is confidently expected that great progress will be made by the Voyager spacecraft now en route to the Saturn System.  相似文献   
114.
115.
The composition, mineralogy and texture of chondritic meteorites suggest they are relatively unaltered relicts of the condensation and accretion processes which took place in the primitive solar nebula. Chondrites thus are thought to contain a unique record of the physico-chemical conditions which prevailed at the time and place (asteroid belt) of their origin. Elemental abundance patterns are an important clue to the events and processes. Most elements can be placed in one of four groups according to their observed fractionation behavior in chondritic material: refractory, siderophile, normally depleted and strongly depleted. This grouping can be explained in terms of four events which presumably took place during cooling, condensation and accretion in the nebula. In order of inferred occurrence these are: (1) partial loss of the initial condensates rich in refractory elements at T > 1300K, (2) partial loss of metallic Fe-Ni grains, perhaps because they were magnetic, at 1000 to 700K, (3) partial remelting and outgassing of the condensate (chondrule formation) at 600 to 350K, and (4) accretion, when the P-T conditions controlled the volatile content (500 to 350K). Total gas pressure at the time and place of accretion is estimated to fall between 10-–6 and 10–-4 atm.Contribution No. 80, Center for Meteorite Studies.  相似文献   
116.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   
117.
A review is presented of the interaction of the solar wind with the magnetic field of the earth. The material is developed primarily from an observational point of view. The early observations are covered through late 1963, with primary emphasis on the sunward interaction region. The historical review of the early results is discussed in terms of the significant contributions of each satellite observation and in the light of our present concept of the solar wind-geomagnetic field interaction. Subsequent to 1963 the observations tend to overlap such that a strictly historical treatment is not tractable and the material is presented from a phenomenological approach. The daytime and night-time hemispheres are covered separately in terms of the significant and separable phenomena which dominate the structure and dynamics of these two regions. Satellite and deep space probe data are compared with relevant theory. Further observational eflorts needed to improve our understanding of the details of the solar wind-geomagnetic field interaction are also discussed.  相似文献   
118.
Uri JJ  Haven CP 《Acta Astronautica》2005,56(9-12):883-889
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew–ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.  相似文献   
119.
The relatively faint optical and UV emission from non-radiative shock waves provides diagnostics for processes related to cosmic ray acceleration in collisionless shocks. Emission line profiles and intensities can be used to determine the efficiencies of electron-ion and ion-ion thermal equilibration, which influence the population of fast particles injected into the acceleration process. It is found that T e/T p declines with shock speed and that T i is roughly proportional to mass in fast shocks. Important information about cosmic ray precursors may be available, but the interpretation is still somewhat ambiguous. The compression ratios in shocks which efficiently accelerate cosmic rays are predicted to be substantially larger than the factor of 4 expected for a strong shock in a = 5/3 perfect gas, and some limits may be available from observations.  相似文献   
120.
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号